Тяжелая артиллерия. Обзор материнской платы Gigabyte GA-X58A-UD9

В середине прошлого года разработчики материнских плат были далеки от массового внедрения интерфейса UEFI со всеми его «красивостями». Gigabyte GA-X58A-UD9 настраивается через проверенный временем Award BIOS.

BIOS Setup Gigabyte GA-X58A-UD9

BIOS Setup Gigabyte GA-X58A-UD9

Прежде всего, нас интересует обширный раздел Motherboard Intelligent Tweaker.

BIOS Setup Gigabyte GA-X58A-UD9

В нижней части окна отображаются основные данные о системе. Более подробно о режиме работы процессора и модулей памяти пользователя информирует подменю M.I.T. Current Status:

BIOS Setup Gigabyte GA-X58A-UD9

В подразделе Advanced Frequency Settings осуществляется управление тактовыми частотами процессорных ядер, интерфейса QPI, контроллера памяти (Uncore), шины PCI Express и модулей ОЗУ.

BIOS Setup Gigabyte GA-X58A-UD9

BIOS Setup Gigabyte GA-X58A-UD9

Ключевую роль здесь играет значение опорной частоты (Bclk), которое на платформе LGA1366 может регулироваться в довольно широких пределах, позволяя разгонять процессоры с заблокированным на повышение множителем.

Параметр Диапазон значений Шаг
CPU Clock Ratio x12 — x65 1
QPI Clock Ratio Slow Mode, x36, x44, x48
Uncore Clock Ratio x12 — x48 2
Base Clock (Bclk) 100 — 600 МГц 1
System Memory Multiplier x6 — x18 2
PCI Express Frequency 90 — 150 МГц 1

Меню третьего уровня Advanced CPU Core Features открывает возможность управления технологиями энергосбережения, функциями Turbo Boost и Hyper-Threading.

BIOS Setup Gigabyte GA-X58A-UD9

Подраздел настроек памяти Advanced Memory Settings позволяет активировать профили XMP, опять же, изменить множитель памяти и определить значения таймингов для каждого из трех каналов (слоты 1-2, 3-4 и 5-6).

BIOS Setup Gigabyte GA-X58A-UD9

BIOS Setup Gigabyte GA-X58A-UD9

В соответствии со статусом флагманского продукта X58A-UD9 имеет огромное количество регулируемых напряжений.

BIOS Setup Gigabyte GA-X58A-UD9

BIOS Setup Gigabyte GA-X58A-UD9

Для удобства восприятия все они собраны в отдельную таблицу:

Параметр Диапазон напряжений, В Шаг, В
CPU VCore 0,5 — 1,9 0,0625
QPI/Vtt Voltage 1,075 — 2,015 0,02
CPU PLL (Voltage) 1,3 — 2,52 0,02 — 0,1
PCI-E (Voltage) 1,0 — 2,14 0,02 — 0,1
QPI PLL (Voltage) 0,8 — 1,6 0,02 — 0,1
IOH Core (Voltage) 1,0 — 2,0 0,02 — 0,1
ICH I/O (Voltage) 1,05 — 2,3 0,02 — 0,1
ICH Core (Voltage) 0,92 — 2,38 0,02 — 0,1
DRAM Voltage 1,3 — 2,6 0,02 — 0,1
DRAM Termination (Voltage) 0,53 — 1,235 0,02 — 0,025
Ch-A Data Vref 0,71 — 0,98 0,01
Ch-B Data Vref 0,71 — 0,98 0,01
Ch-C Data Vref 0,71 — 0,98 0,01
Ch-A Address Vref 0,71 — 0,98 0,01
Ch-B Address Vref 0,71 — 0,98 0,01
Ch-C Address Vref 0,71 — 0,98 0,01
CPU Clock Drive (Voltage) 0,7 — 1,0 0,1
PCI Express Clock Drive (Voltage) 0,7 — 1,0 0,1

Несколько необычно выглядит меню Standard CMOS Features: все интерфейсы для подключения накопителей определяются как IDE, причем каждый канал делится на Slave и Master. Напомним, что на плате находятся десять разъемов SATA (по одному устройству), один IDE (до 2-х устройств) и два eSATA.

BIOS Setup Gigabyte GA-X58A-UD9

Содержание остальных разделов BIOS вполне банально. Не забудем деактивировать все пункты в Power Management Setup, отвечающие за «внезапный» запуск ПК. В данном случае это PME Event Wake Up и Power On by Ring.

BIOS Setup Gigabyte GA-X58A-UD9

Раздел мониторинга напряжений и температур PC Health Status не так информативен, как хотелось бы:

BIOS Setup Gigabyte GA-X58A-UD9

Программе настройки BIOS, на наш взгляд, недостает возможностей хранения оверклокерских профилей (реализовано только в Windows-утилите EasyTune 6).

Комплектное ПО

Серийные экземпляры Gigabyte GA-X58A-UD9 сопровождаются сразу девятью фирменными утилитами, наиболее полезными из которых являются @BIOS (обновление микрокода BIOS) и EasyTune 6 (тонкая настройка и разгон).

Как многим должно быть известно одним из основных параметров любого процессора является его тактовая частота или как ее еще называют операционная частота процессора.

Так вот определяется она двумя показателями — частотой системной шины и множителем.

FSB (cpu frequency) (частота системой шины) x Ratio (множитель) = CPU operating freq (операционной частота центрального процессора)

Так вот cpu frequency это и есть частота системно шины. Также может обозначаться FSB и измеряется в MHz (мегагерцах).

Параметры, определяющие частоту процессора в BIOS

Системная же шина представляет из себя транспортный коридор, соединяющий между собой процессор и все остальные компоненты компьютера. CPU frequency определяется скорость, с которой осуществляется обмен информацией по данной шине.

Данный параметр изменяется в BIOS некоторых моделей материнских плат при разгоне процессора и других компонентов ПК.

неосознанное изменение значения cpu frequency может привести к нестабильной работе компьютера и даже к невозможности включения.

Если вы случайно изменили cpu frequency и теперь компьютер работает неправильно или не работает вообще, то достаточно сбросить настройки BIOS и значение данного параметра вернется к заводскому.

Какой вариант выбрать?

Для большинства пользователей лучше всего установить значение Auto, чтобы BIOS смогла бы автоматически подобрать оптимальное значение. Однако иногда случается так, что BIOS может установить частоту меньшую, чем та, которая является номинальной для ОЗУ. Чтобы исправить это, можно установить в опции значение by SPD или вручную выбрать необходимый вариант значения частоты.

Также ручная установка частоты памяти часто используется при разгоне компьютера. Как известно, увеличение частоты работы оперативной памяти в большинстве случаев позволяет повысить производительность компьютера, хотя и не в такой большой степени, как повышение скорости работы процессора. Обычно прирост производительности при разгоне ОЗУ может составлять от 4 до 12 %. Помимо точечного разгона определенного компонента ПК, есть варианты опций, такие как AI Overclock Tuner или Burn-In Mode которые могут регулировать комплексный разгон.

Для разгона памяти пользователь может указать необходимое значение частоты в опции, а затем протестировать её работу при помощи специальных тестовых программ. В случае, если ОЗУ работает без ошибок, то установленное значение можно оставить в качестве постоянного.

Однако не только установка слишком высоких значений частоты оперативной памяти может иметь негативные последствия. В ряде случаев и установка слишком низких значений, выходящих за пределы спецификаций модулей ОЗУ, также может приводить к ошибкам, в том числе и к ошибкам во время загрузки компьютера.

Определение NB Frequency

Есть в БИОСе и такая штука, как CPU NB Frequency. Что это такое? Параметр NB отвечает за рабочую частоту контроллера памяти. Чем она выше, тем быстрее работает память. Но проблема в том, что постоянная работа на повышенных частотах быстро приводит к износу контроллера. И это нехорошо. Многие профессионалы, конечно, советуют выставлять этот параметр на максимум, мол, «я сто раз так делал, ничего не будет». Но здесь вопрос здравого смысла и логики, а не того, кто, сколько раз и как это делал. Повышенные частоты в любом случае снижают жизненный цикл контроллера. Это непреложные основы физики. Так что к утверждениям «гуру» стоит относиться с известной долей скептицизма. Если вы хотите, чтобы ваш компьютер проработал долго, то не играйтесь с частотами. Так будет лучше. И не стоит выше положенных пределов изменять значение CPU Frequency. Что это снижает срок службы отдельных компонентов — понятно. Но повышенны частоты могут привести и к мгновенному перегреву и выходу из строя процессора. Оно вам надо?

dynamic cpu frequency mode в биосе

interocitor

А при опрометчивом переключении его параметров система не заводится до момента его благополучного обнуления. Ошибки, которые программисты допускают при его составлении, приводят к досадным глюкам и несовместимостям, но по мере их устранения он обновляется и вполне поддается перепрошивке — убедитесь только, что электрическое питание не исчезнет во время нее, иначе быть беде. Наш герой — важная персона, его называют BIOS. А полностью его титул звучит так: Basic Input-Output System, что переводится как «базовая система ввода-вывода».

Поскольку рассматривать «сферический BIOS в вакууме» не особо практично (будет сложнее объяснить, что к чему), для примера возьмем матплату ASUS Rampage II Extreme для процессоров Core i7 в исполнении LGA 1366. Ее выбор обусловлен прежде всего очень богатой функциональностью. Вникнув в ее настройки, читатель будет готов к встрече даже с самыми навороченными материнками — вряд ли в их BIOS найдется что-то незнакомое. Однако некоторые нюансы, характерные именно для этой платформы, будут отмечены и разъяснены подробнее. Поехали.

Зри в корень
Основные параметры начинаются с системного времени и даты . С ними все очевидно. Их значения можно вводить с клавиатуры цифрами, а можно увеличивать и уменьшать кнопками « + » и « — ». Параметр Legacy Diskette А отвечает за дисковод. Он может принимать значения Disabled, 720K, 3.5 in, и 1.44М, 3.5 in, по умолчанию установлен последний вариант. Переключать его не требуется. Параметр Language может менять язык интерфейса с понятного английского на непонятные китайский, немецкий и французский. Людям, которые знают эти языки лучше, чем английский, эта настройка может пригодиться. Мы же продолжим рассматривать англоязычный интерфейс.

Следующие пункты отвечают за подключенные к SATA-портам диски и приводы. Чаще всего таковые корректно обнаруживаются автоматически, и менять в пунктах SATA X, где X — номер порта, ничего не нужно.

Следующий за ними раздел называется Storage Configuration и, как несложно догадаться, имеет самое прямое отношение к настройке дисковой подсистемы. Зайдя в него, можно обнаружить пункты SATA Configuration (допустимые значения: Enhanced, Compatible и Disabled) и Configure SATA as (можно установить на IDE, AHCI или RAID). Очевидно, похожие по названию параграфы меню отвечают за разные вещи, но что именно делает каждый?

SATA Configuration позволяет, во-первых, отключить распаянный на матплате SATA-контроллер (здорово, правда?), выбрав Disabled, во-вторых, установить принятый при использовании современных операционных систем режим Enhanced, в-третьих, перевести дисковую подсистему в совместимый со старыми ОС (Windows 95, 98, Me) режим (Compatible). Причем в этом режиме можно работать и на новых системах, но количество дисковых устройств, подключенных к SATA-контроллеру, будет ограничено четырьмя. Старые ОС не могли представить себе, что их может быть больше (считалось, что есть максимум два канала IDE, на два устройства каждый).

Configure SATA as позволяет показывать операционной системе диски в виде IDE-устройств (тогда даже при работе под Windows 2000 или ХР не возникнет проблем и не потребуются дополнительные драйверы), для чего надо выбрать значение IDE. Если вы используете ОС, которая это позволяет, можно установить продвинутый режим AHCI (Advanced Host Controller Interface), в котором можно задействовать технологию NCQ (естественная очередь команд), горячее подключение и другие прогрессивные фишки. Третий режим служит, как и следует из названия, для создания дисковых массивов. RAID расшифровывается как «Redundant Array of Independent Disks», то есть избыточный (имеется в виду по надежности) массив независимых дисков (уточню, что режим RAID 0 является исключением — он не более, а менее надежный, чем одиночный винт). Для настройки массива надо после активации этого режима войти в утилиту настройки RAID-контроллера, для чего на данной матплате следует во время прохождения POST нажать Ctrl + I.

Два оставшихся пункта, Storage Configuration, Hard Disk Write Protect и SATA Detect Time out , отвечают, соответственно, за защиту дисков от записи (естественно, лучше не активировать ее) и время поиска компьютером устройств дисковой подсистемы по включении. Чем меньше это время, тем быстрее загрузка, а увеличивать его имеет смысл, если диски или приводы по каким-то причинам не успевают определиться при прохождении POST.

Если SATA-устройства перевести в AHCI-режим, в меню появится еще один пункт — AHCI Settings . В нем будет задаваться таймаут запуска с оптических носителей (AHCI CD / DVD Boot Time out) от О до 35 с, шаг 5 с. Еще в нем появятся субменю вида SATA X , в которых можно будет выключить самодиагностику (установить SMART Monitoring в положение Disabled) или само дисковое устройство, точнее отвечающий ему SATA-порт (SATA port X для этого требуется перевести из Auto в Not Installed).

Разобравшись с режимами дисковой подсистемы, мы можем вернуться на уровень выше в меню и посмотреть что к чему в пунктах SATA X (X — номер порта). Да, менять там почти никогда ничего не следует, однако познакомиться с этими субменю все равно не помешает.

Итак, Туре — это вид устройства. Можно принудительно задать CD-ROM или ARMD (ATAPI Removable Media Device, подразумеваются ZIP-дисководы, магнитооптические приводы и тому подобная экзотика).

LBA / Large Mode отвечает за поддержку винтов объемом более 504 Мбайт, и потому из двух возможных значений настоятельно рекомендуется выбрать Auto, а не Disabled.

Block (Multi-Sector Transfer) позволяет отключать передачу нескольких секторов по 512 байт за раз и таким образом сильно снижать скорость работы диска (за один проход будет передаваться один сектор). Для мало-мальски современных хардов с SATA-интерфейсом выбирать Disabled не имеет смысла. Оставляйте как есть.

PIO Mode позволяет навязать диску устаревший режим обмена данными, так как автоматически любой современный НЖМД работает в режиме PIO 4, самом быстром из пяти (с 0 по 4). PIO расшифровывается как «Programmed Input / Output Mode», то есть «программируемый режим ввода / вывода». Менять значение по умолчанию Auto нет нужды.

DMA Mode чуть ближе к нашему времени, чем PIO. DMA значит «Direct Memory Access», «прямой доступ к памяти». Этот режим дополняет PIO и обладает куда большей скоростью (самый быстрый PIO 4 — 16,6 Мбайт/с, самый быстрый DMA — 133 Мбайт/с). Естественно, все современные винты, особенно с интерфейсом SATA, работают в самом шустром UDMA 6. На всякий случай уточню, что SWDMA (Single-Word DMA) — самый тормозной режим, MWDMA (Multi-Word DMA) — это вам тоже не галоп, но все же будет порасторопнее, a UDMA заслуженно именуется «Ultra DMA», потому что быстрее остальных. При этом чем больше цифра после названия режима, тем выше скорость. Переключать значение Auto на что-либо нецелесообразно.

SMART Monitoring — штука полезная и вполне себе современная. Технология позволяет отслеживать состояние жесткого диска, измеряя разные его параметры и отмечая, как они меняются со временем. Из этих данных программы S.M.A.R.T. (Self Monitoring Analysing and Reporting Technology, технология самонаблюдения, анализа и отчетности) делают вывод о том, сколько еще проживет жесткий диск и не пора ли озаботится бэкапом данных и заменой винта. Если S.M.A.R.T. почему-то не включается автоматически (современные харды дружат с ним в обязательном порядке), можно попробовать выставить «Enabled» вручную. В остальных случаях стоит довериться режиму Auto. Принудительно выключать самодиагностику вряд ли понадобится, но возможность такая есть.

И наконец, 32 Bit Transfer задает 32-битный в случае Enabled и 16-битный в случае Disabled режим передачи данных по шине PCI или внутренней шине чипсета. 16-битный режим, естественно, не рекомендуется.

В главном меню BIOS остался всего один пункт — это System Information , то есть общие сведения о системе. В нем показываются номер версии микрокода BIOS и дата ее выпуска, модель установленного процессора и его тактовая частота, количество ОЗУ в системе. Поскольку на рассматриваемой матплате имеется две микросхемы BIOS, здесь же написано, какая из них используется, каким образом она выбрана (аппаратно, то есть джампером, или программно, из соответствующего раздела BIOS). Отображаются и названия для первого и второго BIOS.

Больше в разделе основных настроек BIOS ничего нет (смайл). Но даже перечисленного достаточно, чтобы оценить обилие возможностей. Да, большинство параметров (таких как тонкие настройки дисковой подсистемы) лучше здесь не менять, так как ничего, кроме падения скорости работы, это не вызовет, но перевести, например, устройства в AHCI-режим можно и даже полезно. Настройка RAID-массивов тоже может понадобиться.

Меню для гурманов
Сообщив, что при заходе в AMIBIOS появится открытая вкладка Main, я несколько слукавил. В общем случае так оно и будет, но на некоторых матплатах, и в частности на ASUS Rampage II Extreme, вы сначала попадете в специальный «командный пункт», где собраны инструменты оверклокера; а вкладку Main сдвинули на второе место. И это разумно, потому что Extreme Tweaker (именно так в данном случае назван разгонный инструментарий) востребован куда как чаще. Отмечу, что функции разгона, а также мониторинга частот, напряжений и температур каждый производитель матплат реализует немного по-своему. Поэтому описание таковых для одной материнки поможет освоиться с оверклокингом и приобрести некий кругозор, но не послужит дословным руководствам для тонкой настройки любого ПК.

Две строчки в самом верху страницы говорят вам о том, на какой частоте после применения заданных вами настроек BIOS заработают центральный процессор и оперативная память. Они подписаны: «Target CPU Frequency» и «Target DRAM Frequency» соответственно.

Четыре следующих параметра отвечают за автоматический разгон. CPU Level up позволяет переключить ЦП на частоту 3,6 (i7-crazy-3,60G) либо 4,0 Ггц (i7-crazy-4,00G), причем остальные связанные с частотой процессора параметры, такие как напряжения на разных узлах, заботливая мамка подстроит сама. Примерно такой же эффект, только на память, оказывает, как несложно догадаться, Memory Level up — можно задать частоту ОЗУ в 1600 или 1800 Мгц, остальные параметры система подберет. Одновременно использовать оба Level Up’a нельзя. Следующий пункт отвечает как раз за выбор режима разгона. Называется он Al Overclock Tuner и позволяет выбрать следующее: Auto (сохраняет штатные частоты и напряжения), Х.М.Р. (то есть extreme Memory Profile, нештатный профиль памяти, позволяет выбрать Profile #1 или #2, первый с агрессивными таймингами, второй — с повышенной частотой), CPU Level up (приоритет процессора), Memory Level up (приоритет памяти), ROG Memory Profile (позволяет выбрать один из трех профилей памяти: Speedy, Flying и Lightning, то есть «быстрый», «летящий» или «молниеносный»), и наконец, самый интересный режим Manual — то есть «ручной».

В ручном режиме можно вести настройку быстродействия «от процессора» ( ОС from CPU Level up ), «от памяти» (в журнале написано ОС from CPU Level up , но, по-моему, должно быть ОС from Memory Level Up ) и «от балды», в смысле в полностью ручном режиме, руководствуясь только собственными соображениями. Рассмотрим по порядку, что поддается регулировке «ручками».

CPU Ratio Setting , как и следует из названия, устанавливает значение множителя камня. Множитель — это целое или полуцелое число, на которое умножается базовая частота, чтобы в результате получилась тактовая частота ЦП. У большинства процессоров максимальный множитель ограничен, однако у камней серий Extreme от Intel и Black Edition от AMD множитель разблокирован — его можно увеличивать выше штатного значения. Иногда множитель требуется уменьшить, например с целью увеличения частоты шины процессора или памяти при неизменной частоте самого ЦП (в частности, когда достигнут его потолок).

CPU Configuration отображает информацию о камне (показывает имя производителя, частоту, базовую частоту, размеры кэша 1-го, 2-го и 3-го уровней, максимальный множитель, текущий множитель, CPUID). Кроме того, он, опять-таки, позволяет менять множитель (CPU Ratio Setting) и включать или выключать разные поддерживаемые камнем технологии. Для чего служат эти технологии, посмотрим во второй части статьи. А пока разберемся со средствами для оверклокеров.

Камертоны
BCLK Frequency — это самый важный пункт для разгонщика, так как он позволяет изменять внутреннюю базовую частоту (Internal Base Clock). Частота процессора вычисляется как произведение базовой частоты и множителя CPU. Таким образом, если максимальный множитель камня зафиксирован (а так чаще всего и есть), подъем базовой частоты — единственный путь оверклокинга камня. Надо только помнить, что она недаром названа базовой, — это своеобразный камертон всей системы, на нее ориентируются кроме ЦП и оперативная память, и шина QPI (подробнее о ней чуть позже), и северный мост (внеядерные компоненты ЦП). Поэтому, увеличивая базовую частоту, следует помнить это и, при необходимости, понижать множители переразогнанных компонентов. Из-за этого оверклокинг и является занятием творческим (смайл). Задать Base Clock можно, вбив нужное число с клавиатуры либо отрегулировав текущее значение кнопками «+» и « — ». По умолчанию опорная частота (иногда Base Clock переводят так) составляет 133 Мгц.

Тот же принцип, кстати, действует и при разгоне камней AMD. А вот на платформе LGA 775 частота процессора зависит от его внешней шины FSB.

PCIE Frequency позволяет менять частоту шины PCI Express. Учитывая, что для разгона видеокарт изобрели более вменяемые методы, хотя бы ту же программу RivaTuner, особого смысла двигать этот параметр нет. Но попробовать можно. Помните только, что увеличение данной частоты выше штатного значения быстро приводит к нестабильности и задирать ее выше 115 Мгц, право, не следует.

DRAM Frequency — это частота динамической оперативной памяти (Dynamic Random Access Memory). Никакой другой в ПК не бывает уже очень давно. К сожалению, задать желаемую частоту, просто вбив значение с клавиатуры, не получится — есть фиксированные множители, то есть частоту ОЗУ надо выбрать из нескольких вариантов. Естественно, при разгоне этот пункт меню понадобится почти наверняка.

UCLK Frequency — это частота работы внеядерных компонентов процессора (Uncore Clock Frequency), то есть контроллера памяти, встроенного в ЦП. Она тоже зависит от базовой частоты и к тому же еще и от частот памяти. При потере стабильности на высоких частотах процессора можно попробовать вручную замедлить контроллер памяти — может помочь. Но следует помнить, что его частота должна превышать герцовку ОЗУ как минимум вдвое.

QPI Frequency — это частота внешней процессорной шины. Поскольку она тоже зависит от BCLK, есть вероятность того, что ее придется понизить принудительно при потере стабильности. Кстати, шина QPI (Quick Path Interconnect, то есть «быстрый путь взаимосвязи») была сделана по аналогии с HyperTransport, внешней процессорной шиной на платформах AMD. Поэтому, встретив в BIOS матплаты под камни AMD множитель шины HyperTransport, вы будете знать, для чего он нужен, и сможете уменьшить его при необходимости.

Чувство такта
DRAM Timing Control позволяет управлять задержками оперативной памяти. Дело в том, что ОЗУ синхронизирует операции с данными с сигналом тактового генератора. Задержки между этими операциями выражаются целым числом тактов и называются таймингами. По умолчанию значения этих параметров берутся из микросхем SPD на модулях памяти и привязаны к частотам ОЗУ. Их уменьшение приводит к увеличению быстродействия или к потере стабильности, то есть является методом разгона. Основных таймингов памяти пять: CL, t RCD , t rp , t ras и CR.

DRAM CAS# Latency называется так-же CL. Это задержка между подачей команды на чтение или запись столбца и ее выполнением. Сильно влияет на быстродействие и устойчивость системы, подбирается индивидуально.

DRAM RAS# to CAS# Delay, она же t RCD . Задержка между сигналом RAS# на выбор строки и CAS# на выбор столбца. Тоже можно попробовать понизить, однако стабильность после этого надо тщательно проверить.

DRAM RAS# PRE Time , или t rp , — это задержка, обусловленная перезарядкой банка памяти. Дело в том, что оперативка состоит из конденсаторов, которые имеют обыкновение разряжаться, причем довольно-таки быстро. И поэтому предусмотрен механизм их зарядки. Этот параметр определяет, сколько на нее уходит тактов. Если выставить слишком малое значение, заряды емкостей будут теряться вместе с данными, которые ими обозначены.

DRAM RAS# ACT Time , или, что то же самое, t ras , являет собой минимальное время активности строки. Тут следует сказать, что память устроена как таблица со строками, столбцами и ячейками на их пересечениях. При этом в результате физического и логического устройства современной ОЗУ при необходимости что-то сделать с ячейкой памяти считывается вся строка. Причем пока ПК работает с одной строкой памяти, он не может ничего сделать с другими. Сначала он должен дезактивировать строку, то есть оставить ее в покое. А сделать это он может не раньше, чем истечет задержка t ras . Поэтому в некоторых задачах, там, где ПО приходится иметь дело с данными, раскиданными в беспорядке по всей памяти, этот тайминг существенно влияет на скорость работы.

DRAM RAS# to RAS # Delay (сокращается как t rrd ) — один из неосновных таймингов. Задает минимальное время между командами на считывание строк разных банков памяти (память в соответствии со своей архитектурой подразделяется на банки). Параметр можно не менять, толку все равно будет чуть.

DRAM REF Cycle Time (t rfc ) — это минимальное время между двумя циклами перезарядки. Относится к неосновным таймингам.

DRAM Write Recovery Time (сокращенно T wr ) — это время, которое должно пройти после записи до начала перезарядки памяти. Тайминг неосновной, да и подобрать его непросто.

DRAM READ to PRE Time (сокращенно T rt ) — почти то же, что и предыдущий пункт, только после операции не записи, а чтения. Тоже ни разу не основной параметр.

DRAM FOUR ACT WIN Time (t faw ) — это минимальное время активности четырех строк из разных банков памяти. Неосновной тайминг.

DRAM WRITE to READ Delay (t wtr ) — как явствует из названия, задержка между процессами записи и чтения (точнее, окончанием записи и подачей команды на чтение).

DRAM Timing Mode — это, как ни парадоксально, самый важный тайминг. Чаще он называется CR (tcr), или Command Rate, составляет 1, 2 или 3 такта. Это задержка между подачей любой команды контроллером памяти и началом ее выполнения. Если память достаточно качественная, чтобы выдерживать режим 1T (в данном случае он обозначен почему-то 1N), лучше его и установить. CR в три такта — наименее желательный вариант. Почему же такую важную вещь не рассмотрели в самом начале? По элементарной причине — в меню BIOS, который я сейчас расписываю по пунктам, эта важная настройка отодвинута достаточно далеко от начала страницы в пользу многочисленных не шибко полезных второстепенных таймингов. Из каких соображений так сделано, неизвестно, однако стоит иметь в виду, что нужные опции BIOS находятся не всегда на самом видном месте.

DRAM Round Trip Latency on CHX , где X = А, В, С, — это задержка между отправкой команды с контроллера памяти и прибытием отклика на нее на соответствующем канале памяти (А, В или С). Она складывается из множества таймингов, и регулируется не ее абсолютная величина, а ускорение (Advance n Clock, то есть «ускорить на л тактов») либо замедление (Delay n Clock, «задержать на n тактов»). Эта настройка должна влиять на скорость и стабильность работы компьютера, но как именно она функционирует, сказать сложно: ведь неизвестно, за счет каких слагаемых, то есть более простых, не составных таймингов, меняется эта величина. Можно поэкспериментировать. Управление этим параметром реализовано далеко не на всех матплатах, но это нестрашно — того же эффекта можно достичь, «поиграв» основными таймингами. В данном случае пунктов три — по числу каналов памяти.

Помните о том, что память состоит из нескольких банков? Так вот, банки бывают логическими и физическими (физические подразделяются на логические). Физический банк называют также «rank» (на русский это можно перевести как «ранг», но никто не переводит, говорят: «ранк»). К чему это я? А вот к чему.

DRAM WRITE to READ Delay (DD) определяет задержку между записью и чтением на разных модулях (DD — это Different Devices, разные устройства) памяти.

DRAM WRITE to READ Delay (DR) руководит величиной временного интервала между записью и чтением на разных ранках, то есть физических банках памяти. DR — это Different Ranks, разные, стало быть, ранки.

DRAM WRITE to READ Delay (SR) задает такую же по смыслу величину, только для операций над одним ранком (a SR — это, разумеется, Same Rank, «тот же самый ранк»).

DRAM READ to WRITE Delay (DD), (DR) и (SR) отвечают за настройку задержки между чтением и записью для тех же трех случаев соответственно.

DRAM READ to READ (DD), (DR) и (SR) и DRAM WRITE to WRITE (DD), (DR) и (SR) — это еще шесть настроек, они позволяют задать количество тактов от чтения до чтения и от записи до записи в тех же случаях.

Все эти пункты меню, общим количеством 12 штук, могут быть полезны для тонкой настройки подсистемы памяти, однако экспериментально подобрать их — задача непростая и решается медленно и вдумчиво. Они есть далеко не на всех матплатах и не относятся к основным настройкам, но энтузиасту пригодятся — при условии, что у него есть свободное время.

Напряжения
EPU II Phase Control — это фирменная технология ASUS. Она позволяет динамически отключать фазы питания процессора при падении нагрузки на него. Аналогичные технологии есть и у других разработчиков матплат. Толк от них сомнительный. Режим Full Phase обеспечивает максимум стабильности, особенно в разгоне, так как в нем фазы не отключаются; на нем лучше и остановить свой выбор. Хотя для энергоэффективного медиацентра подобную фичу лучше активировать (перевести в Auto) — его процессор не так часто нуждается в усиленном питании.

Load-Line Calibration позволяет скомпенсировать провал напряжения на процессоре при увеличении нагрузки на него (Vdroop). Напряжение проседает из-за того, что проводники, по которым на камень подается питание, имеют собственное сопротивление, достаточное для того, чтобы при увеличении тока падение напряжения на них было значительным (согласно закону Ома, оно составит U = IR). При разгоне лучше включить эту опцию принудительно, но перед этим нелишне выяснить, правильно ли она функционирует на вашей модели матплаты, потому как она бывает реализована с ошибкой и тогда не помогает, а мешает.

CPU Differential Amplitude задает разностную амплитуду тактового сигнала. Это значит, что по умолчанию разница между минимальным и максимальным напряжением тактового сигнала равна 610 мВ (при значении данного параметра Auto). С возрастанием тактовой частоты повышается не только скорость работы камня, но и количество помех, из-за которых проц может «прослушать» тактовый сигнал, что приведет к ошибкам. Если увеличить амплитуду с умолчального значения хотя бы до 700 мВ, помехи удастся перекрыть. Опцией можно и нужно пользоваться при потере стабильности при разгоне.

Extreme OV позволяет юзеру задирать напряжения на устройствах очень высоко. При этом выживание процессора и прочего железа производителем не гарантируется, поэтому пользоваться этой возможностью стоит только при экспериментах с экстремальным охлаждением, например жидким азотом. Впрочем, такой подход никто не отменял, и для установки рекордов фишка может оказаться весьма полезной.

CPU Voltage регулирует не что иное, как напряжение питания камня. Подкормить ЦП бывает нужно для стабилизации в разгоне. Перед тем как поднимать напряжение на ядрах выше штатного значения, обязательно надо выяснить, какое максимальное значение признано безопасным для разгоняемой вами модели камня, и не превышать его. Между прочим, эту функцию можно использовать для снижения вольтажа на процессоре и тем самым его нагрева в том же медиацентре.

На данной модели матллаты BIOS помечает потенциально опасные для ЦП напряжения красным цветом, а существенно завышенные — желтым. Такая полезная индикация попадается часто, но не везде.

CPU PLL Voltage — это напряжение питания системы фазовой автоподстройки частоты (Phase Locked Loop). Его повышение должно способствовать более успешному разгону, однако, если вы решились на него, озаботьтесь охлаждением подсистемы питания процессора — она будет сильно греться.

QPI / DRAM Core Voltage регулирует напряжение на контроллере памяти и шине QPI. Их подкормка может быть нужна, если данные узлы стали «бутылочным горлышком» при разгоне. Похожая настройка, кстати, встречается и на платформах AMD (только там она называется НТ Voltage) и тоже бывает полезна.

IOH Voltage отвечает за питание северного моста. Как и другие «гастрономические излишки», способствует уверенной работе на завышенных клокингах. В данном случае, как и в предыдущем, действовать надо осторожно, чтобы не сжечь процессор. Перед началом экспериментов следует выяснить пределы, за которые эти напряжения выводить опасно.

IOH PCIE Voltage меняет напряжение на тех линиях шины PCIE, что предоставляются северным мостом. Нужды этим пользоваться нет.

IOH Voltage позволяет регулировать напругу на южном мосту матплаты. Зачем это может понадобиться, сказать сложно. Лучше не трогать эту настройку.

ICH PCIE Voltage дает возможность подкормить те линии PCIE, которые обязаны существованием южному мосту. Поскольку разгон PCIE мы сочли нецелесообразным (см. выше), параметр этот можно смело оставлять в покое.

DRAM Bus Voltage управляет напряжением на памяти. Штука необходимая, ибо у многих современных оперативно-запоминающих модулей даже самый что ни на есть штатный вольтаж выше общепринятой нормы. Да и для разгона ОЗУ приподнять это значение ни разу не мешает.

DRAM REF Voltage служит для задания референсных амплитуд напряжения на каждом из трех каналов контроллера памяти. Штука тут, опять-таки, в появлении помех при работе оперативки на высоких частотах. Если увеличить референсную амплитуду напряжения, то есть разницу в вольтаже между нулем и единицей, памяти будет проще воспринимать данные и команды. При этом с помощью DRAM DATA REF можно настроить шину данных, a DRAM CTRL REF поможет подрегулировать шину команд. На большинстве матплат эти пункты не разделяют, а вот каналы памяти почти всегда регулируются независимо друг от друга.

Гоночная амуниция
Debug Mode позволяет выбрать, в каком виде выводить сообщения об ошибках. Материнка, взятая в качестве примера, может выдавать на специальный экран не только POST-коды (две шестнадцатеричные цифры, которые надо расшифровать с помощью инструкции или сайта производителя), но и осмысленные сообщения на английском. Возможность полезная, но специфическая, встречается нечасто. Даже присутствие простого индикатора POST-кодов на матплате — уже большой плюс. В данном же случае, выбрав String, при глюке получаем англоязычное разъяснение. Выбрав Code — две цифры, от 0 до F каждая.

Keyboard Tweaklt Control включает и отключает управление технологией Tweaklt с клавиатуры. Технология эта представляет собой тот самый экранчик для вывода сообщений POST и других целей, а также управляющие кнопки на матплате. С помощью нее можно быстро смотреть и менять, не заходя в BIOS, параметры системы — частоты и напряжения. Предназначено это хозяйство для удобства разгона, проведения бенчсессий и тестов. Встречается нечасто и стоит дорого. У других фирм есть аналоги.

CPU Spread Spectrum (распределенный спектр ЦП) позволяет уменьшить количество электромагнитных помех, но иногда затрудняет разгон по опорной частоте BCLK. Эффект достигается сглаживанием пиков тактового сигнала, из-за чего и могут появиться проблемы с распознаванием тактов устройствами. Принудительно активировать эту несколько сомнительную опцию стоит разве что при обработке звука, чтобы снизить влияние высокочастотных помех от матплаты на саундкарту, да и то не факт, что оно надо. А вот отключить Spread Spectrum при разгоне очень желательно.

PCIE Spread Spectrum также служит для уменьшения электромагнитных помех, но для шины PCIE, и работает аналогичным образом. Как следствие, технология эта может помешать оверклокингу видюхи, в связи с чем рекомендуется к отключению при нештатных режимах подсистемы видео.

CPU Clock Skew определяет задержку в пикосекундах (1О-12 с) между импульсами тактового генератора и импульсами шины данных процессора. Подстройка этого параметра позволяет поднять стабильность системы при разгоне, однако не забывайте, что у каждой частоты есть свое наиболее выгодное значение CPU Clock Skew.

IOH Clock Skew позволяет настроить задержку импульсов шины данных встроенного в камень северного моста. Из каких-то соображений опция вынесена в отдельный пункт, но предполагается, что, изменив предыдущий параметр, следует отрегулировать и этот, и наоборот. В некоторых матплатах Clock Skew реализуется одним пунктом. А в некоторых такой настройки и вовсе не предусмотрено.

Интерлюдия
Забавно, но факт: выше были описаны только два раздела меню BIOS. Остальные будут во второй части этого материала. И даже в две части уложиться в данном случае непросто, хотя и описывается всего одна матплата. Пусть это даст вам представление о возможностях, которые BIOS предоставляет искушенному пользователю. Особенно BIOS хорошей оверклокерской матплаты.

Заниматься сёрфингом можно не только в океане

В предыдущих «ДрайWWWерах» мы уже рассказывали о том, что означают часто употребляемые в интернет-общении словечки.

Бан — мера наказания на форумах, чатах и блогах, когда участник лишается каких-либо прав на определённый срок за нарушение правил.

Блог — изначально: персональный дневник, который человек вёдет в Интернете. Своеобразный журнал. Содержание блога абсолютно произвольное. Как правило, заметки (посты) отображаются по дате (в обратном хронологическом порядке), а также сортируются по категориям. С понятием блога связано огромное количество специфических терминов, например, RSS-подписка (функция, позволяющая читать посты, не заходя на сайт, а скачивая их специальной программой по отдельному RSS каналу), блогер (владелец блога), блогосфера (всё, что связано с блогами и блогерами), трэкбэк (механизм уведомления блогера о появлении ссылки на его блог) и т.д. Как правило, блог имеет функцию комментирования и любой читатель может высказать своё мнение о посте.

Браузер (броузер, browser) — программа для посещения сайтов. В стандартной комплектации Windows это Internet Explorer. Существуют и другие профессиональные программы, позволяющие значительно экономить трафик, а также проводить время в Сети более комфортно. Как правило, они бесплатны. Например, большое распространение получили браузеры Mozilla Firefox и Opera. В каждом один и тот же сайт может смотреться по-разному. Это вызвано тем, что разные браузеры (и даже разные версии одного и того же браузера!) могут использовать различные спецификации языков, на которых написаны эти самые сайты. Поэтому и получается, что разные браузеры по-разному «понимают», как должен выглядеть тот или иной сайт. К сожалению, для юзеров эта проблема не решаема. Заботиться о том, как сайт выглядит в разных браузерах, — задача веб-мастера каждого конкретного сайта.

Букмарк, или закладка, — специальная функция браузера, позволяющая добавить любую страницу или веб-сайт в «избранное» для последующего быстрого доступа к нему.

Веб-мастер — человек, занимающийся разработкой и (или) поддержанием сайта.

Dreamweaver — самая популярная программа для создания сайтов и редактирования веб-страниц. Разрабатывается компанией Adobe Systems.

ИМХО — «по моему скромному мнению» (аббревиатура от английской фразы In My Humble Opinion).

ЖЖ — («Живой Журнал» от LiveJournal) — популярный в мире сервис для ведения собственных блогов.

Клик (click), или щелчок, — нажатие по ссылке, как правило, ведущее к переходу на другую страницу сайта или другой сайт.

Контент — строго говоря, полезное содержание в самом широком смысле.Например, контент сайта — это все материалы, размещенные на нём.

Мультимедиа — в широком смысле: информация не только текстовая, но и аудиальная, графическая и в видеоформате.

Плагин — дополнительный модуль программы, расширяющий её основные возможности.Например, Flash Player Plugin от Adobe Systems добавляет к стандартным функциям браузера возможность просматривать флэш видео в режиме онлайн.

Подкаст — принятое в Рунете обозначение разного рода аудиозаписей, размещаемых автором на регулярной основе. Существует целый сайт аудиоподкастов — http://rpod.ru. Отсюда же термин «скайп-каст»: аудиозапись разговора в программе Skype (популярная программа для проведения аудиоконференций через Интернет, сайт).

Поисковики (поисковые системы, или ПС, искалки. По-английски — SE или search engines) — специальные сервисы, которые выдают упорядоченный список сайтов в ответ на введённое юзером ключевое слово (запрос). Например, Яндекс и др.Документы в поисковой выдаче ранжируются (т.е. выдаются) не по алфавиту (как думают многие), а по степени соответствия содержания страницы (контента, запомним это слово) поисковому запросу. Это соответствие называется релевантностью. Алгоритмы определения релевантности поисковики не разглашают.

Портал — общее понятие большого контентного сайта. Отчасти синоним «тематического центра».

Регистрация (в Интернете) — процедура получения логина и пароля, т.е. данных, необходимых для доступа к аккаунту.

Сабж — тема (от англ. subject).

Сёрфер — человек, занимающийся поиском информации в Сети (сёрфингом), посетитель интернет-сайтов.

Скриншот (скрин) — «снимок экрана». Специальная функция, позволяющая «фотографировать» экран. Используется для наглядного объяснения каких-либо функций компьютера. Создаётся либо с помощью стандартной функции Print Screen (на клавиатуре есть специальная клавиша — Print Screen (PrtScn), чаще всего располагающаяся в правом верхнем углу клавиатуры) и дальнейшей обработки в отдельном графическом редакторе (PhotoShop, Paint или другом) либо с помощью специализированных программ (например, Snag It от Techsmith). Простейший способ сделать скриншот: нажимаем клавишу Print Screen на клавиатуре, открываем программу Paint (Пуск — Программы — Стандартные); выбираем «правка» — «вставить», затем — «файл» и «сохранить как». Лучше файл сохранить с расширением JPG или GIF. Для более продвинутой работы со скриншотами используются специальные программы, например, Snag It от Techsmith.

Спам (spam) — массовая рассылка электронных писем (как правило, рекламного характера) по е-mail адресам, владельцы которых не давали своего согласия на получение писем от данного отправителя. Во многих странах спам — это уголовно наказуемое действие, влекущее за собой серьёзные последствия. Как правило, истинных спамеров (т.е. людей, занимающихся непосредственно рассылкой непрошеной корреспонденции) очень трудно поймать. Спамеры-профессионалы занимаются рассылками на постоянной основе за деньги. Это их работа.

Крупнейшие компании ведут борьбу со спамом — выпускают специальные программы, пытаются блокировать подозрительные письма и т.д., так как проблема спама — одна из самых серьёзных в Интернете (количество спам-сообщений в сутки – это 60-70% относительно всей корреспонденции). Очень часто спам используется для массового распространения вирусов (поэтому не рекомендуется открывать файлы, присланные неизвестно кем и откуда). Но нужно понимать, что спам не имеет ничего общего с добровольным е- mail маркетингом.

Содержание

Идея подобных интерфейсов не нова, и, например, издание THG так описывает происхождение этой шины: [6]

Читайте также:  Программы для создания рисунков на компьютере

Решение, выбранное Intel под названием QuickPath Interconnect (QPI), не является чем-то новым; оно представляет собой встроенный контроллер памяти и очень быструю последовательную шину «точка-точка». Подобная технология была представлена пять лет назад в процессорах AMD, но на самом деле она ещё старше. Подобные принципы, которые заметны в продуктах AMD и теперь Intel, представляют собой результат работы, проделанной десять лет назад инженерами DEC во время разработки Alpha 21364 (EV7). Поскольку многие бывшие инженеры DEC перешли в компанию из Санта-Клары, неудивительно, что подобные принципы выплыли в последней архитектуре Intel.

Текст книги "Тонкая настройка компьютера с помощью BIOS. Начали!"

Повысив частоты чипсета и шин, можно поднять их производительность, однако на практике чаще возникает необходимость установить фиксированные значения этих частот, чтобы избежать их чрезмерного повышения при разгоне процессора.

НТ Frequency (LDT Frequency, НТ Link Speed)

С помощью этого параметра изменяется частота шины НТ (HyperTransport), по которой обмениваются данными процессоры компании AMD с чипсетом. В качестве значений данного параметра могут использоваться множители, и для расчета фактической частоты следует умножить выбранный множитель на значение базовой частоты (200 МГц). А в некоторых версиях BIOS вместо множителей нужно выбирать частоту шины НТ из нескольких доступных значений.

Для процессоров семейства Athlon 64 максимальная частота НТ была равна 800-1000 МГЦ (множитель 4 или 5), а для процессоров Athlon П/Phenom II – 1800-2000 МГЦ (множитель 9 или 10). При разгоне множитель для шины НТ иногда придется понижать, чтобы после поднятия базовой частоты частота НТ не вышла за допустимые пределы.

AGP/PCI Clock

Параметр устанавливает частоты шин AGP и PCI.

□ Auto – частоты выбираются автоматически;

□ 66.66/33.33, 72.73/36.36, 80.00/40.00 – частота шин AGP и PCI соответственно. Стандартным является значение 66.66/33.33, а другие могут использоваться при разгоне.

PCIE Clock (PCI Express Frequency (MHz))

Параметр позволяет вручную изменять частоту шины PCI Express.

□ Auto – установлена стандартная частота (обычно 100 МГц);

□ от 90 до 150 МГц – частоту можно задать вручную, а диапазон регулировки зависит от модели системной платы.

CPU Clock Skew (MCH/ICH Clock Skew)

Параметры позволяют регулировать смещение тактовых сигналов процессора (CPU), а также северного (МСН) и южного (ICH) мостов.

□ Normal – будет автоматически установлено оптимальное значение (рекомендуется для нормального режима работы и умеренного разгона);

□ от 50 до 750 – величина смещения тактовых сигналов в пикосекундах. Подбор этого параметра может улучшить стабильность системы при разгоне.

FSB Strap to North Bridge

Параметр используется в некоторых платах для установки режима работы северного моста чипсета в зависимости от частоты FSB.

□ Auto – параметры чипсета настраивается автоматически (это значение рекомендуется для работы компьютера в штатном режиме);

□ 200 MHz, 266 MHz, 333 MHz, 400 MHz – частота FSB, для которой устанавливается режим работы чипсета. Более высокие значения увеличивают максимально возможную частоту FSB при разгоне, но снижают производительность чипсета. Оптимальное значение параметра при разгоне обычно приходится подбирать экспериментально.

Регулировка напряжения питания чипсета

Кроме напряжения питания процессора и памяти, некоторые системные платы также позволяют регулировать напряжение компонентов чипсета и уровни сигналов. Название соответствующих параметров может быть различным в зависимости от производителя платы. Вот несколько примеров:

□ Chipset Core PCIE Voltage;

□ MCH & PCIE 1.5V Voltage;

□ PCH Core (PCH 1,05/1,8);

□ NF4 Chipset Voltage;

□ FSB OverVoltage Control;

□ NВ Voltage (NBVcore);

Практика показывает, что изменение указанных напряжений в большинстве случаев не дает заметного эффекта, поэтому оставляйте для этих напряжений значение Auto (Normal).

Spread Spectrum

При работе компонентов современного компьютера на высоких частотах возникает нежелательное электромагнитное излучение, которое может быть источником помех для различных электронных устройств. Чтобы несколько уменьшить величину импульсов излучения, применяют спектральную модуляцию тактовых импульсов, что делает излучение более равномерным.

□ Enabled – режим модуляции тактовых импульсов включен, что немного снижает уровень электромагнитных помех от системного блока;

□ 0.25 %, 0.5 % – уровень модуляции в процентах (задается в некоторых версиях BIOS);

□ Disabled – режим Spread Spectrum отключен.

СОВЕТ

Для стабильной работы системы при разгоне всегда отключайте Spread Spectrum.

В некоторых моделях системных плат есть несколько самостоятельных параметров, управляющих режимом Spread Spectrum для отдельных компонентов системы, например CPU Spread Spectrum, SATA Spread Spectrum, PCIE Spread Spectrum и др.

Подготовка к разгону

Перед разгоном обязательно предпримите несколько важных шагов.

□ Проверьте стабильность работы системы в штатном режиме. Нет никакого смысла разгонять компьютер, который в обычном режиме склонен к сбоям или зависаниям, поскольку разгон только усугубит эту ситуацию.

□ Найдите все необходимые параметры BIOS, которые понадобятся при разгоне, и разберитесь с их назначением. Эти параметры были описаны выше, но для разных моделей плат они могут различаться, и для учета особенностей конкретной платы нужно изучить инструкцию к ней.

□ Разберитесь со способом обнуления BIOS для вашей модели платы (см. гл. 5). Это необходимо, чтобы сбросить настройки BIOS при неудачном разгоне.

□ Проверьте рабочие температуры основных компонентов и их охлаждение. Для контроля температур можно использовать диагностические утилиты с компакт-диска к системной плате или же программы независимых разработчиков: EVEREST, SpeedFan (www.almico.com) и др. Чтобы улучшить охлаждение, возможно, придется заменить процессорный кулер на более мощный, а также принять меры для улучшения охлаждения чипсета, видеоадаптера и оперативной памяти.

□ Оцените возможности вашего блока питания и при необходимости замените его более мощным. При разгоне повышается потребляемая компьютером мощность, и возможностей блока питания может не хватить.

Разгон процессоров Intel Core 2

Семейство процессоров Intel Core 2 является одним из наиболее удачных за всю историю компьютерной индустрии благодаря высокой производительности, невысокому тепловыделению и отличному разгонному потенциалу. Начиная с 2006 года компания Intel выпустила десятки моделей процессоров этого семейства под различными торговыми марками: Core 2 Duo, Core 2 Quad, Pentium Dual-Core и даже Celeron.

Для разгона процессоров Core 2 необходимо повышать частоту FSB, штатное значение которой может составлять 200, 266, 333 или 400 МГц. Точное значение частоты FSB вы можете узнать в спецификации к вашему процессору, однако не забывайте, что частота FSB указывается с учетом четырехкратного умножения при передаче данных. Например, для процессора Core 2 Duo Е6550 2,33 ГГц (1333 МГц FSB) реальное значение частоты FSB составляет 1333 : 4 = 333 МГц.

При повышении частоты FSB будут автоматически повышаться частоты работы оперативной памяти, чипсета, шин PCI/PCIE и других компонентов. Поэтому перед разгоном следует принудительно их уменьшить, чтобы узнать максимальную рабочую частоту процессора. Когда же она будет известна, можно подобрать оптимальные рабочие частоты для других компонентов.

Последовательность разгона может быть такой.

1. Установите оптимальные настройки BIOS для вашей системы. Выберите значение Disabled (Off) для параметра Spread Spectrum, который не очень совместим с разгоном. Таких параметров у вас может оказаться несколько: для процессора (CPU), шины PCI Express, интерфейса SATA и др.

2. На время выполнения разгона отключите технологии энергосбережения Intel SpeedStep и С1Е Support. После завершения всех экспериментов можно снова включить эти функции для уменьшения энергопотребления процессора.

3. Установите вручную частоты шин PCI/PCIE. Для шины PCI следует установить частоту 33 МГц, а для PCI Express лучше задать значение в пределах 100-110 МГц. В некоторых моделях плат при значении Auto или паспортном значении 100 МГц результаты могут получиться хуже, чем при нестандартном значении частоты 101 МГц.

4. Уменьшите частоту работы оперативной памяти. В зависимости от модели платы это можно сделать одним из двух способов:

■ установить минимальное значение частоты оперативной памяти с помощью параметра Memory Frequency или подобного (для доступа к этому параметру, возможно, понадобится отключить автоматическую настройку памяти);

■ установить минимальное значение множителя, определяющего соотношение частоты FSB и памяти, с помощью параметра FSB/Memory Ratio, System Memory Multiplier или аналогичного.

Поскольку способы изменения частоты памяти в разных платах различаются, рекомендуется перезагрузить компьютер и с помощью диагностических утилит EVEREST или CPU-Z убедиться, что частота памяти действительно уменьшилась.

5. После подготовительных действий можно приступать непосредственно к процедуре разгона. Для начала можно поднять частоту FSB на 20-25 % (например, с 200 до 250 МГц или с 266 до 320 МГц), после чего попробовать загрузить операционную систему и проверить ее работу. Параметр для установки может называться CPU FSB Clock, CPU Overclock in MHz или как-то по-другому.

ПРИМЕЧАНИЕ

Для получения доступа к ручной регулировке FSB вам, возможно, придется отключить автоматическую установку частоты процессора (параметр CPU Host Clock Control) или динамический разгон системной платы. Например, в системных платах ASUS следует выбрать для параметра AI Overclocking (AI Tuning) значение Manual.

6. С помощью утилиты CPU-Z проверьте реальные рабочие частоты процессора и памяти, чтобы убедиться в правильности ваших действий (рис. 6.3). Обязательно контролируйте рабочие температуры и напряжения. Запустите 1-2 тестовые программы и убедитесь, что нет сбоев и зависаний.

7. Если проверка разогнанного компьютера прошла без сбоев, можно его перезагрузить, повысить частоту FSB на 5 или 10 МГц, после чего снова проверить работоспособность. Продолжайте до тех пор, пока система не даст первый сбой.

8. При возникновении сбоя можно уменьшить частоту FSB, чтобы вернуть систему в стабильное состояние. Но если вы хотите узнать предельную частоту процессора, нужно повышать напряжение питания ядра с помощью параметра CPU VCore Voltage или CPU Voltage. Изменять напряжение питания нужно плавно и не более чем на 0,1-0,2 В (до 1,4-1,5 В). Тестируя компьютер с увеличенным напряжением питания процессора, следует обязательно обратить внимание на его температуру, которая не должна быть больше 60 °С. Окончательная цель этого этапа разгона – найти максимальную частоту FSB, при которой процессор может работать длительное время без сбоев и перегрева.

9. Подберите оптимальные параметры оперативной памяти. На шаге 4 мы уменьшили ее частоту, однако с увеличением частоты FSB частота памяти также увеличилась. Фактическое значение частоты памяти можно рассчитать вручную или определить с помощью утилит EVEREST, CPU-Z и др. Для ускорения памяти можно повышать ее частоту или уменьшать тайминги, а для проверки стабильности – использовать специальные тесты памяти: утилиту MemTest или встроенные тесты памяти в диагностических программах EVEREST и подобных.

Рис. 6.3. Контроль реальной частоты процессора в программе CPU-Z

10. После того как процессор разогнан и подобраны оптимальные параметры шины памяти, следует всесторонне протестировать скорость разогнанного компьютера и стабильность его работы.

Разгон процессоров Intel Core i3/5/7

До 2010 года самыми популярными являлись процессоры Intel Core 2, но к этому времени конкурирующие модели от AMD практически догнали их по производительности и к тому же продавались по более низким ценам. Однако еще в конце 2008 года Intel разработала процессоры Core i7 с совершенно новой архитектурой, но они выпускались небольшими партиями и стоили очень дорого. И только в 2010 году ожидается приход чипов с новой архитектурой в массы. Компания планирует выпускать несколько моделей для всех сегментов рынка: Core i7 – для производительных систем, Core i5 – для среднего сегмента рынка и Core i3 – для систем начального уровня.

Порядок разгона процессоров Intel Core i3/5/7 не очень отличается от разгона чипов Core 2, но для получения хороших результатов следует учитывать основные особенности новой архитектуры: перенос контроллера памяти DDR3 непосредственно в процессор и замену шины FSB новой последовательной шиной QPI. Сходные принципы уже давно используются в процессорах AMD, правда, компания Intel выполнила все на очень высоком уровне, и на момент выхода книги производительность процессоров Core i7 является недосягаемой для конкурентов.

Для установки рабочих частот процессора, оперативной памяти, модулей памяти, контроллера DDR3, кэш-памяти и шины QPI используется принцип умножения базовой частоты 133 МГц (BCLK) на определенные коэффициенты. Поэтому основной метод разгона процессоров – повышение базовой частоты, правда, при этом будут автоматически повышаться частоты всех других компонентов. Как и в случае с разгоном Core 2, необходимо предварительно понизить коэффициент умножения оперативной памяти, чтобы после увеличения базовой частоты частота памяти не стала слишком высокой. Корректива множителей для шины QPI и контроллера DDR3 может понадобиться при экстремальном разгоне, а в большинстве случаев эти компоненты будут нормально работать при повышенных частотах.

Исходя из сказанного выше, примерный порядок разгона системы на базе Core i3/5/7 может быть таким.

1. Установите оптимальные настройки BIOS для вашей системы. Отключите параметр Spread Spectrum, технологии энергосбережения Intel SpeedStep и С1Е Support, а также технологию Intel Turbo Boost.

2. Установите минимальный коэффициент умножения для оперативной памяти с помощью параметра System Memory Multiplier или аналогичного. В большинстве плат минимально возможным является множитель 6, который соответствует частоте 800 МГц в штатном режиме. В платах ASUS для этих целей используется параметр DRAM Frequency, для которого следует установить значение DDR3-800 MHz.

3. После подготовительных действий можно приступить к повышению базовой частоты с помощью параметра BCLK Frequency или аналогичного. Начать можно с частоты 160-170 МГц, а затем ступенчато повышать ее на 5-10 МГц. Как показывает статистика, для большинства процессоров удается поднять базовую частоту до 180-220 МГц.

4. При возникновении первого сбоя можно немного уменьшить базовую частоту, чтобы вернуть систему в рабочее состояние, и тщательно протестировать ее на стабильность. Если же вы хотите выжать из процессора максимум возможного, можете попробовать повысить напряжение питания на 0,1-0,3 В (до 1,4-1,5 В), но при этом следует позаботиться о более эффективном охлаждении. В некоторых случаях увеличить разгонный потенциал системы можно с помощью поднятия напряжения шины QPI и кэш-памяти L3 (Uncore), оперативной памяти или системы фазовой автоподстройки частоты процессора (CPU PLL).

5. После определения частоты, на которой процессор может работать длительное время без сбоев и перегрева, можно подобрать оптимальные параметры оперативной памяти и других компонентов.

Разгон процессоров AMD Athlon/Phenom

В середине 2000-х годов компания AMD выпускала неплохие для того времени процессоры семейства Athlon 64, но вышедшие в 2006 году процессоры Intel Core 2 превзошли их по всем параметрам. Выпущенным в 2008 году процессорам Phenom так и не удалось догнать по производительности Core 2, и лишь в 2009 году процессоры Phenom II смогли на равных соперничать с ними. Однако к этому времени у Intel уже был готов Core i7, а чипы от AMD применялись в системах начального и среднего уровня.

Разгонный потенциал процессоров AMD немного ниже, чем у Intel Core, и зависит от модели процессора. Контроллер памяти находится непосредственно в процессоре, а связь с чипсетом осуществляется по специальной шине HyperTransport (НТ). Рабочая частота процессора, памяти и шины НТ определяется путем умножения базовой частоты (200 МГц) на определенные коэффициенты.

Для разгона процессоров AMD в основном используется метод повышения базовой частоты процессора, при этом автоматически будет повышаться частота шины HyperTransport и частота шины памяти, поэтому их нужно будет уменьшить перед началом разгона. Также в ассортименте компании имеются модели с разблокированным множителем (серия Black Edition), и разгон таких чипов можно выполнить, увеличив коэффициент умножения; при этом нет необходимости корректировать параметры оперативной памяти и шины НТ.

Разгонять процессоры Athlon, Phenom или Sempron можно в такой последовательности.

1. Установите оптимальные для вашей системы настройки BIOS. Отключите технологии Cool’n’Quiet и Spread Spectrum.

2. Уменьшите частоту оперативной памяти. Для этого, возможно, сначала придется отменить установку параметров памяти с помощью SPD (параметр Memory Timing by SPD или аналогичный), а затем указать минимально возможную частоту в параметре Memory Frequency for или подобном (рис. 6.4).

3. Уменьшите частоту шины HyperTransport с помощью параметра НТ Frequency или аналогичного (рис. 6.5) на 1-2 ступени. Например, для процессоров Athlon 64 номинальная частота НТ составляет 1000 МГц (множитель 5) и вы можете понизить ее до 600-800 МГц (множитель 3 или 4). Если в вашей системе имеется параметр для установки частоты встроенного в процессор контроллера памяти, например CPU/NB Frequency, его значение также рекомендуется уменьшить.

4. Установите фиксированные значения частот для шин PCI (33 МГц), PCI Express (100-110 МГц) и AGP (66 МГц).

5. После всех перечисленных действий можно приступать к самому разгону. Для начала можно поднять базовую частоту на 10-20 % (например, с 200 до 240 МГц), после чего попробовать загрузить операционную систему и проверить ее работу. Параметр для установки может называться CPU FSB Clock, CPU Overclock in MHz или аналогично.

Рис. 6.4. Установка частоты оперативной памяти

Рис. 6.5. Уменьшение рабочей частоты шины HyperTransport

6. С помощью утилиты CPU-Z проверьте реальные рабочие частоты процессора и памяти. Если проверка разогнанного компьютера прошла без сбоев, можно продолжать повышать базовую частоту на 5-10 МГц.

7. При возникновении сбоя можно уменьшить базовую частоту, чтобы вернуть систему в стабильное состояние, или продолжить разгон с повышением напряжения питания ядра (рис. 6.6). Изменять напряжение питания нужно плавно и не более чем на 0,2-0,3 В. Тестируя компьютер с увеличенным напряжением питания процессора, обратите внимание на температуру процессора, которая не должна быть выше 60 °С.

Рис. 6.6. Увеличение напряжения питания ядра процессора

8. Завершив разгон процессора, установите оптимальную частоту шины НТ, оперативной памяти и ее контроллера, выполните тестирование скорости и стабильности разогнанного компьютера. Для снижения нагрева процессора включите технологию Cool’n’Quiet и проверьте стабильность работы в этом режиме.

Разблокирование ядер в процессорах Phenom ll/Athlon II

В семействе процессоров AMD Phenom II, которые вышли в 2009 году, имеются различные модели с двумя, тремя и четырьмя ядрами. Двух-и трехъядерные модели компания AMD выпускала путем отключения одного или двух ядер в четырехъядерном процессоре. Объяснялось это соображениями экономии: если в одном из ядер четырехъядерного процессора обнаруживался дефект, его не выбрасывали, а отключали дефектное ядро и продавали как трехъядерный.

Как выяснилось позже, заблокированное ядро можно включить с помощью BIOS, а некоторые из процессоров, подвергшихся разблокировке, могут нормально работать со всеми четырьмя ядрами. Этот феномен можно объяснить тем, что со временем брака при производстве четырехъядерных процессоров стало меньше, а поскольку на рынке существовал спрос на двух– и трехъядерные модели, производители могли принудительно отключать и вполне рабочие ядра.

На момент выхода книги было известно об успешных разблокировках большинства моделей этого семейства: Phenom II Х3 серии 7хх, Phenom II Х2 серии 5хх, Athlon II ХЗ серии 7хх, Athlon II ХЗ серии 4хх и некоторых других. В четырехъядерных моделях Phenom II Х4 8хх и Athlon II Х4 6хх есть вероятность разблокировки кэш-памяти L3, а в одноядерном Sempron 140 – второго ядра. Вероятность разблокировки зависит не только от модели, но и от партии, в которой выпущен процессор. Встречались партии, в которых можно было разблокировать больше половины процессоров, а в некоторых партиях разблокировке поддавались лишь редкие экземпляры.

Для разблокировки необходимо, чтобы в BIOS системной платы присутствовала поддержка технологии Advanced Clock Calibration (АСС). Эту технологию поддерживают чипсеты AMD с южным мостом SB750 или SB710, а также некоторые чипсеты компании NVIDIA, например GeForce 8200, GeForce 8300, nForce 720D, nForce 980.

Сама процедура разблокировки несложная, вам достаточно установить значение Auto для параметра Advanced Clock Calibration или аналогичного. В некоторых платах от MSI следует также включить параметр Unlock CPU Core. В случае неудачи вы можете попробовать настроить АСС вручную, экспериментально подобрав значение параметра Value. Иногда после включения АСС система может вообще не загрузиться, и вам придется обнулять содержимое CMOS с помощью перемычки (см. гл. 5). Если никакими методами вам не удалось разблокировать процессор, отключите АСС, и процессор будет работать в штатном режиме.

Проверить параметры разблокированного процессора можно с помощью диагностических утилит EVEREST или CPU-Z, но чтобы убедиться в положительном результате окончательно, следует провести всестороннее тестирование компьютера. Разблокировка выполняется на материнской плате и не изменяет физического состояния процессора. Вы можете в любой момент отказаться от разблокировки, отключив АСС, а при установке разблокированного процессора на другую плату он снова окажется заблокированным.

Текст книги "Тонкая настройка компьютера с помощью BIOS. Начали!"

В некоторых системных платах есть специальные параметры для комплексного разгона системы, позволяющие увеличить ее производительность, особо не вдаваясь в тонкости настройки отдельных компонентов. Этот способ доступен для начинающих пользователей, но его эффективность может быть невысокой, а в некоторых случаях система даже может работать нестабильно.

Dynamic Overclocking (D.O.T.)

С помощью этого параметра можно задействовать технологию динамического разгона, которая применяется в ряде системных плат от MSI. Система отслеживает нагрузку на процессор, и когда она достигнет максимума, его производительность будет увеличена, а после спада нагрузки процессор автоматически возвратится в штатный режим.

□ Disabled – технология динамического разгона не используется;

□ Private, Sergeant, Captain, Colonel, General, Commander – выбор одного из указанных значений позволит задать уровень ускорения процессора от 1 % (для Private) до 15 % (для Commander).

Некоторые системные платы MSI позволяют выполнить расширенную настройку динамического разгона. Параметр Dynamic Overclocking Mode позволяет выбирать компоненты для разгона, а с помощью параметров CPU D.0.T3 step 1/2/3 setting и PCIE D.0.T3 step 1/2/3 setting можно подстраивать уровни разгона для процессора и шины PCI Express.

CPU Intelligent Accelerator 2 (C.I.A. 2)

C.I.A. 2 – технология динамического разгона, аналогичная D.O.T., но применяющаяся в системных платах Gigabyte.

□ Disabled – технология динамического разгона не используется;

□ Cruise, Sports, Racing, Turbo, Full Thrust – выбор одного из указанных значений задает уровень ускорения процессора от 5 % (Cruise) до 19% (Full Thrust).

Memory Performance Enhance (Performance Enhance)

Параметр позволяет повысить производительность оперативной памяти в системных платах Gigabyte и некоторых других производителей.

□ Standard (Normal) – разгон оперативной памяти не используется;

□ Fast, Turbo, Extreme – выбор одного из уровней разгона. В зависимости от модели системной платы эффект от этих значений может различаться.

AI Overclocking (Al Tuning)

С помощью этого параметра, который есть в некоторых системных платах ASUS, можно выбрать один из доступных вариантов разгона. Возможные значения:

□ Manual – все параметры разгона можно изменять вручную;

□ Auto – устанавливаются оптимальные параметры;

□ Standard – загружаются стандартные параметры;

□ AI Overclock (Overclock Profile) – система будет разогнана на величину, заданную с помощью параметра Overclock Options (возможные варианты – от 3 до 10 %);

□ AI N.O.S. (Non-Delay Overclocking System) – используется технология динамического разгона, аналогичная D.O.T. Более детально настраивается с помощью параметра N.O.S. Option; в зависимости от модели платы вы можете установить уровень разгона в процентах или чувствительность системы динамического разгона.

AI Overclock Tuner

Параметр служит для выбора режима разгона в ряде новых плат от ASUS.

□ Auto – автоматическая настройка параметров (режим по умолчанию);

□ Х.М.Р. – настройка работы памяти соответственно стандарту Intel Extreme Memory Profile (X.M.P.). Этот стандарт также должен поддерживаться модулями памяти, а для выбора текущего профиля памяти используется параметр extreme Memory Profile;

□ D.O.C.P. – при выборе этого значения вы можете задать желаемый режим работы оперативной памяти с помощью дополнительного параметра DRAM О.С. Profile, а базовая частота (BCLK) и коэффициенты умножения для памяти и процессора будут подобраны автоматически;

□ Manual – все параметры разгона настраиваются вручную.

Robust Graphics Booster (LinkBoost)

Параметр позволяет ускорить работу видеосистемы, увеличивая тактовые частоты видеоадаптера.

□ Auto – видеосистема работает в обычном режиме на тактовых частотах по умолчанию;

□ Fast, Turbo – видеосистема работает на повышенных частотах, благодаря чему производительность немного повышается (особенно в режиме Turbo).

Intel Turbo Boost

Параметр позволяет включить технологию динамического разгона процессоров семейства Intel Core i7/5. Технология Intel Turbo Boost дает возможность автоматически увеличивать частоту процессора при загруженности одного или нескольких ядер и отсутствии перегрева процессора. Возможные значения:

□ Enabled – технология Turbo Boost включена. При загруженности всех ядер множитель процессора может быть автоматически увеличен на 1-2 ступени, что соответствует поднятию тактовой частоты на 133 или 266 МГц. Если загружено только одно ядро, частота процессора может быть увеличена на две ступени и более, в зависимости от модели процессора;

□ Disabled – режим Turbo Boost отключен.

Параметры разгона процессора

Как известно, каждый процессор работает на некоторой частоте, которая указана в его технической характеристике и определяется как произведение базовой частоты на коэффициент умножения.

CPU Clock Ratio (CPU Ratio Selection, Multiplier Factor, Ratio CMOS Setting)

Параметр устанавливает коэффициент умножения для центрального процессора. Большинство современных процессоров позволяют только уменьшать его или вообще не реагируют на изменение коэффициента. Однако в ассортименте производителей имеются модели с разблокированным множителем (например, серия Black Edition у AMD), которые можно легко разогнать, просто повысив множитель. Возможные значения:

□ Auto – коэффициент умножения устанавливается автоматически в зависимости от процессора;

□ 7.0Х, 7.5Х, 8.0X, 8.5Х, 9.0X, 9.5Х и т. д. – выбрав одно из указанных значений, можно заставить процессор работать с особым коэффициентом умножения, в результате чего его тактовая частота будет отличаться от паспортной.

CPU Host Clock Control (CPU Operating Speed)

Параметр включает ручное управление частотой FSB (BCLK) и коэффициентом умножения, что может понадобиться при разгоне. Возможные значения:

□ Disabled или Auto Detect – тактовая частота процессора устанавливается автоматически; это значение следует выбирать для работы системы в обычном, неразогнанном режиме;

□ Enabled (On) или User Define – тактовая частота процессора может быть изменена вручную с помощью параметра CPU FSB Clock (это значение используется при разгоне).

CPU FSB Clock (CPU Host Frequency (MHz), FSB Frequency, External Clock)

Параметр устанавливает частоту системной шины FSB, или внешнюю частоту центрального процессора, с которой синхронизируются все остальные частоты. Изменение частоты FSB – основной способ разгона процессоров, а диапазон и шаг регулировки зависит от чипсета и модели системной платы.

Если вы не собираетесь разгонять компьютер, установите для этого параметра значение Auto либо отключите ручную настройку для режима работы процессора с помощью параметра CPU Operating Speed или аналогичного.

BCLK Frequency (Base Clock)

Параметр используется в системах на базе процессоров Core i3/5/7 и позволяет изменять базовую частоту, от которой зависят рабочие частоты процессора, шины QPI, оперативной памяти и ее контроллера. Штатное значение базовой частоты – 133 МГц, а шаг и диапазон регулировки зависят от модели платы. Для доступа к этому параметру может понадобиться включить ручную настройку частоты с помощью параметра Base Clock Control или аналогичного.

QPI Frequency (QPI Link Speed)

Параметр позволяет установить частоту шины QPI, которая используется для связи процессора Core i3/5/7 с чипсетом.

□ Auto – частота QPI устанавливается автоматически в соответствии с паспортными параметрами процессора;

□ хЗб, х44, х48 – множитель, определяющий частоту QPI относительно базовой (133 МГц);

□ 4800, 5866, 6400 – в некоторых платах вместо множителя может использоваться числовое значение частоты в мегагерцах.

CPU/NB Frequency (Adjust CPU-NB Ratio)

Параметр позволяет устанавливать частоту встроенного в процессор AMD контроллера памяти. В зависимости от модели платы в качестве значений может использоваться частота в мегагерцах или множитель относительно базовой частоты.

CPU Voltage Control (CPU VCore Voltage)

С помощью этого параметра можно вручную изменить напряжение питания центрального процессора, что иногда нужно при разгоне. Возможные значения:

□ Auto (Normal) – напряжение питания процессора устанавливается автоматически в соответствии с его паспортными параметрами;

□ числовое значение напряжения в диапазоне от 0,85 до 1,75 В (в зависимости от модели системной платы диапазон и шаг регулировки могут быть другими).

В некоторых платах для этих же целей используется параметр CPU Over Voltage, который позволяет увеличивать напряжение относительно паспортного на заданную величину.

ВНИМАНИЕ

Чрезмерно высокое питающее напряжение может вывести процессор из строя. Для большинства современных процессоров допустимым является увеличение напряжения на 0,2-0,3 В.

Современные процессоры, кроме вычислительных ядер, могут содержать кэш-память, контроллер оперативной памяти и другие компоненты. Для них в некоторых платах имеется возможность настраивать напряжение питания и уровни сигналов, но их влияние на стабильность разогнанной системы обычно невелико. Вот несколько подобных параметров:

□ CPU VTT Voltage – напряжение питания контроллера шины QPI и кэшпамяти L3 (Intel Core i3/5/7);

□ CPU PLL Voltage – напряжение питания схемы фазовой автоподстройки частоты. Этот параметр актуален для четырехъядерных процессоров Intel;

□ CPU/NB Voltage – напряжение питания контроллера памяти и кэшпамяти L3 в процессорах AMD;

□ CPU Differential Amplitude (CPU Amplitude Control, CPU Clock Drive) – регулировка амплитуды сигналов процессора;

□ Load-Line Calibration – включение этого параметра позволит улучшить стабильность напряжения питания при большой нагрузке на процессор.

Advanced Clock Calibration (NVidia Core Calibration)

Этот параметр предназначен для улучшения разгонного потенциала процессоров Phenom и Athlon. Технология Advanced Clock Calibration (АСС) поддерживается в новых чипсетах для процессоров AMD и позволяет выполнять автоматическую подстройку рабочей частоты и напряжения питания процессора.

□ Disable – технология АСС отключена, это значение рекомендуется для штатного (неразогнанного) режима работы;

□ Auto – технология АСС работает в автоматическом режиме, это значение рекомендуется при разгоне;

□ All Cores – при выборе данного значения вы сможете установить с помощью параметра Value уровень АСС в процентах для всех ядер одновременно;

□ Per Core – в отличие от предыдущего варианта, вы сможете настроить АСС для каждого ядра отдельно. Ручная настройка АСС может понадобиться, если при значении Auto система работает нестабильно.

Данный параметр вызвал огромный интерес у компьютерных энтузиастов, поскольку позволяет разблокировать неактивные ядра и превратить двух– или трехъядерный процессор Athlon/Phenom в четырехъядерный. Подробнее об этом читайте далее.

Параметры разгона оперативной памяти

Оперативная память работает по управляющим сигналам от контроллера памяти, который вырабатывает последовательность сигналов с некоторыми задержками между ними. Задержки необходимы для того, чтобы модуль памяти успел выполнить текущую команду и подготовиться к следующей. Эти задержки называют таймингами и обычно измеряют в тактах шины памяти. Среди всех таймингов наибольшее значение имеют следующие: CAS# Latency (tCL), RAS# to CAS# delay (tRCD), RAS# Precharge (tRP) и Active to Precharge Delay (tRAS).

При настройке BIOS по умолчанию все необходимые параметры памяти задаются автоматически. В каждом модуле памяти есть специальный чип под названием SPD (Serial Presence Detect), в котором записаны оптимальные значения для конкретного модуля. Для разгона следует отключить автоматическую настройку памяти и задавать все параметры вручную, причем при разгоне процессора вам придется не повышать частоту памяти, а, наоборот, понижать ее.

Количество доступных для настройки параметров оперативной памяти может сильно различаться для разных моделей системных плат, даже выполненных на одном и том же чипсете. В большинстве плат есть возможность изменять частоту памяти и основных таймингов, что вполне достаточно для разгона (рис. 6.2). Любители тщательной оптимизации и разгона могут выбрать более дорогую плату с множеством дополнительных настроек, а в самых дешевых платах средства ручной настройки памяти будут ограниченными или отсутствовать вообще. Параметры оперативной памяти могут находиться в разделе с настройками разгона, в разделе Advanced Chipset Features или в одном из подразделов раздела Advanced.

Рис. 6.2. Основные параметры оперативной памяти

DRAM Timing Selectable (Timing Mode)

Это основной параметр для настройки оперативной памяти, с помощью которого выбирается ручной или автоматический режим установки параметров.

□ By SPD (Auto) – параметры модулей памяти устанавливаются автоматически с помощью данных из чипа SPD; это значение по умолчанию, и без особой необходимости менять его не следует;

□ Manual – параметры модулей памяти устанавливаются вручную; при выборе этого значения можно изменять установки рабочих частот и таймингов.

Configure DRAM Timing by SPD (Memory Timing by SPD)

Смысл этих параметров полностью аналогичен рассмотренному выше DRAM Timing Selectable, а возможные значения будут такими:

□ Enabled (On) – параметры оперативной памяти устанавливаются автоматически в соответствии с данными SPD;

□ Disabled (Off) – оперативная память настраивается вручную.

Memory Frequency (DRAM Frequency, Memclock Index Value, Max Memclock)

Параметр отображает или устанавливает частоту работы оперативной памяти. Эта частота в большинстве случаев задается автоматически в соответствии с информацией из SPD. Настраивая частоту вручную, можно заставить память ускориться, однако далеко не каждый модуль при этом будет работать стабильно.

□ Auto – частота оперативной памяти устанавливается автоматически в соответствии с данными SPD (по умолчанию);

□ 100, 120, 133 (РС100, РС133) – возможные значения для памяти SDRAM;

□ 200, 266, 333, 400, 533 (DDR266, DDR333, DDR400, DDR533) – возможные значения для памяти DDR;

□ DDR2-400, DDR2-566, DDR2-667, DDR2-800, DDR2-889, DDR2-1067 – значения для памяти DDR2;

□ DDR3-800, DDR3-1066, DDR2-1333, DDR2-1600 – значения для памяти DDR3.

В некоторых платах этот параметр доступен только для чтения, а для изменения частоты памяти следует использовать параметр System Memory Multiplier.

System Memory Multiplier (FSB/Memory Ratio)

Определяет соотношение (множитель) между частотой FSB (BCLK) и частотой памяти.

□ Auto – соотношение между частотой FSB (BCLK) и частотой памяти настраивается автоматически в соответствии с данными SPD;

□ соотношение (например, 1:1, 1:2, 3:2, 5:4) или множитель (2, 2,5, 2,66, 3,00, 3,33, 4,00 и т. д.), определяющий связь между частотой FSB (BCLK) и частотой памяти. Конкретный набор значений зависит от типа чипсета и модели платы.

Ручная установка множителя применятся при разгоне, в этом случае множитель (соотношение) понижают, чтобы он не вышел за допустимые пределы при поднятии базовой частоты. Контролировать фактическое значение частоты памяти вы можете с помощью информационного параметра Memory Frequency или диагностических утилит, например CPU-Z (www.cpuid.com) или EVEREST.

CAS# Latency (tCL, DRAM CAS# Latency)

Параметр устанавливает задержки между подачей сигнала выборки столбца (CAS#) и началом передачи данных.

Возможные значения этого параметра зависят от типа используемых модулей и модели платы. Для памяти DDR диапазон регулировки может составлять от 1,5 до 3 тактов, для DDR2 – от 3 до 7 тактов, для DDR3 – от 4 до 15 тактов. При уменьшении значения CAS# Latency работа памяти будет ускоряться, однако далеко не все модули могут стабильно работать при низких задержках.

RAS# to CAS# delay (tRCD, DRAM RAS-to-CAS Delay)

Параметр изменяет время задержки между сигналом выборки строки (RAS#) и сигналом выборки столбца (CAS#).

Диапазон регулировки зависит от модели платы и может составлять от 1 до 15 тактов. Чем меньше значение, тем быстрее доступ к ячейке, однако, как и в случае с CAS# Latency, слишком низкие значения приведут к нестабильной работе памяти.

RAS# Precharge (tRP, DRAM RAS# Precharge, SDRAM RAS# Precharge, Row Precharge Time)

Параметр задает минимально допустимое время, чтобы подзарядить строку после ее закрытия.

Возможные значения – от 1 до 15. При меньших значениях память работает быстрее, но слишком низкие могут привести к ее нестабильности.

Active to Precharge Delay (tRAS, DRAM RAS# Activate to Precharge, Min RAS# Active Time)

Параметр устанавливает минимальное время между командой активизации строки и командой закрытия, то есть время, в течение которого строка может быть открыта.

Диапазон регулировки зависит от модели платы и может составлять от 1 до 63 тактов. Нет однозначной зависимости между значением этого параметра и производительностью памяти, поэтому для максимального эффекта следует подбирать tRAS экспериментально.

DRAM Command Rate (1Т/2Т Memory Timing)

Параметр устанавливает задержку при передаче команд от контроллера к памяти.

□ 2Т (2Т Command) – величина задержки равна двум тактам, что соответствует меньшей скорости, но большей надежности работы памяти;

□ IT (IT Command) – задержка в один такт увеличивает скорость оперативной памяти, однако не всякая система может при этом нормально работать.

В некоторых версиях BIOS встречается параметр 2Т Command, при включении которого устанавливается задержка в два такта, а при отключении – в один такт.

Extreme Memory Profile (Х.М.Р.)

Параметр позволяет включить поддержку расширенных профилей памяти. Данная технология разработана компанией Intel и предполагает запись в чип SPD дополнительных наборов параметров для работы на повышенной частоте или с минимальными задержками. Для использования этой технологии она должна поддерживаться вашим модулем памяти.

□ Disabled – память работает в штатном режиме;

□ Profile!, Profile2 – выбор одного из профилей памяти с повышенной производительностью. Чтобы узнать параметры этих профилей, следует обратиться к подробной спецификации вашего модуля.

Дополнительные параметры памяти

Как уже отмечалось, в некоторых системных платах имеются дополнительные параметры памяти. Они оказывают меньшее влияние на производительность, чем рассмотренные выше основные тайминги, поэтому их в большинстве случаев следует оставить по умолчанию. Если же у вас есть время и желание экспериментировать, с их помощью можно немного повысить скорость работы памяти. Чаще всего встречаются следующие параметры:

□ tRRD (RAS to RAS delay) – задержка между активизацией строк разных банков;

□ tRC (Row Cycle Time) – длительность цикла строки памяти;

□ tWR (Write Recovery Time) – задержка между завершением операции записи и началом предзаряда;

□ tWTR (Write to Read Delay) – задержка между завершением операции записи и началом операции чтения;

□ tRTP (Precharge Time) – интервал между командами чтения и предварительного заряда;

□ tRFC (ROW Refresh Cycle Time) – минимальное время между командой обновления строки и командой активизации или другой командой обновления;

□ Bank Interleave – определение режима чередования при обращении к банкам памяти;

□ DRAM Burst Length – определение размера пакета данных при чтении из оперативной памяти;

□ DDR Clock Skew (Clock Skew for Channel А/В) – регулировка смещения тактовых сигналов для модулей памяти.

ВНИМАНИЕ

Изменение таймингов памяти может привести к нестабильной работе компьютера, поэтому при первом же сбое следует установить тайминги по умолчанию.

Параметр увеличивает напряжение питания чипов оперативной памяти для их более устойчивой работы на повышенных частотах. При выборе значения Auto (Default) для чипов памяти будет установлено стандартное напряжение питания, которое составляет 2,5 В для памяти DDR, 1,8 В – для DDR2 и 1,5 В – для DDR3.

Для более эффективного разгона оперативной памяти вы можете несколько увеличить напряжение питания, выбрав одно из предлагаемых значений. Диапазон и шаг регулировки зависят от модели платы, а в качестве значений могут применяться как абсолютные, так и относительные значения напряжений.

В некоторых платах могут присутствовать дополнительные параметры для настройки опорных напряжений отдельно для каждого канала памяти, например Ch-A/B Address/Data VRef. Практически всегда для них следует устанавливать значение Auto, а их подстройка может понадобиться только при экстремальном разгоне.

ВНИМАНИЕ

Во избежание необратимых повреждений модулей памяти не выставляйте чрезмерно высоких значений напряжений, а также позаботьтесь о более эффективном охлаждении модулей.

Данное произведение размещено по согласованию с ООО «ЛитРес» (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.

Как настроить BIOS (биос) по пунктам

А при опрометчивом переключении его параметров система не заводится до момента его благополучного обнуления. Ошибки, которые программисты допускают при его составлении, приводят к досадным глюкам и несовместимостям, но по мере их устранения он обновляется и вполне поддается перепрошивке – убедитесь только, что электрическое питание не исчезнет во время нее, иначе быть беде. Наш герой – важная персона, его называют BIOS. А полностью его титул звучит так: Basic Input-Output System, что переводится как «базовая система ввода-вывода».

Что это и для чего
BIOS является небольшой программой, записанной на микросхему памяти стандарта EEPROM (Electrically Erasable Programmable Read-Only Memory, то есть «электрически стираемое программируемое постоянное запоминающее устройство») или флэш-памяти, что примерно то же самое. BIOS матплаты – это первая софтина, которую компьютер использует сразу же после включения. Его задача – опознать устройства (процессор, память, видео, диски и т. д.), проверить их исправность, инициировать, то есть запустить, с определенными параметрами и затем передать управление загрузчику операционной системы.

Вообще-то, BIOS встречается не только на матплате, но и на других узлах компьютера – вплоть до сетевых адаптеров. Однако мы решили, что героем нашей статьи должен стать «материнский» биос, потому как именно манипуляции с ним чаще всего производят юзеры.

Итак, владелец ПК может в достаточно широких пределах управлять поведением BIOS. Прежде всего его можно перепрошить, то есть стереть содержимое микросхемы, а затем записать новое. Эта возможность применяется для обновления кода BIOS. В новых версиях микропрограммы устраняются допущенные разработчиками ошибки и вводится адекватная поддержка новых устройств (к примеру, новых моделей процессоров или оперативной памяти).

Второй путь вмешательства в BIOS менее кардинальный, однако дает пользователю огромное количество возможностей. Это изменение параметров, которые задаются аппаратуре при запуске системы. Они хранятся в энергозависимой памяти CMOS (для сохранения этих настроек на матплате имеется батарейка). Для того чтобы менять эти настройки, нужно при запуске системы нажать некую кнопку – какую именно, компьютер напишет (например: «Press Del to enter Setup»), после чего появляется надпись «Entering Setup…», а затем интерфейс управления BIOS. И именно его детальному описанию и посвящена оставшаяся часть статьи.

Читайте также:  Ошибка авторизации в программе BlueStacks

BIOS всех распространенных матплат основаны на коде, написанном одной из двух фирм: American Management, Inc. (AMI) или Award. Они несколько отличаются друг от друга, однако в общем похожи. Мы будем рассматривать AMIBIOS. Разобравшись в нем, можно легко сориентироваться и в AwardBIOS.

Поскольку рассматривать «сферический BIOS в вакууме» не особо практично (будет сложнее объяснить, что к чему), для примера возьмем матплату ASUS Rampage II Extreme для процессоров Core i7 в исполнении LGA 1366. Ее выбор обусловлен прежде всего очень богатой функциональностью. Вникнув в ее настройки, читатель будет готов к встрече даже с самыми навороченными материнками – вряд ли в их BIOS найдется что-то незнакомое. Однако некоторые нюансы, характерные именно для этой платформы, будут отмечены и разъяснены подробнее. Поехали.

Как правильно настроить биос?
После запуска компьютера BIOS начинает процедуру самопроверки по включении – Power-On Self Test (POST). Во время нее матплата показывает пользователю логотип производителя или данные о прохождении проверки оборудования (в зависимости от текущих настроек). Внизу экрана в это время написано, как зайти в интерфейс настройки BIOS и, на всякий случай, как вызвать утилиту перепрошивки BIOS (она есть в биосах подавляющего большинства относительно современных матплат, начиная с платформы Socket A, и позволяет обновить микрокод, не загружая ОС).

В данном случае вход в BIOS осуществляется нажатием Del. При этом компьютер напишет, что заходит в интерфейс настройки, а затем отобразит его. В случае AMIBIOS основную часть экрана займет уже открытая вкладка Main, в которой поддаются настройке самые основные параметры системы. Чтобы перейти к другой вкладке, следует использовать стрелки «влево» и «вправо». Список вкладок с указанием активной в данный момент отображен наверху в виде строки меню.

Содержимое вкладки Main, как и остальных, разделено по вертикали на два неравных по величине поля. В левом размещены настройки, поддающиеся изменению, и иногда дополнительная диагностическая информация. Пункт, на котором установлен курсор, выделен по умолчанию белым. В правое поле выведены контекстные подсказки на английском – они помогают быстро освоиться с интерфейсом. За перемещение между пунктами вкладки отвечают стрелки «вверх» и «вниз». Выбрать пункт можно, нажав Enter.

Основные параметры начинаются с системного времени и даты. С ними все очевидно. Их значения можно вводить с клавиатуры цифрами, а можно увеличивать и уменьшать кнопками «+» и «-». Параметр Legacy Diskette A отвечает за флопповод. Он может принимать значения Disabled, 720K, 3.5 in, и 1.44M, 3.5 in, по умолчанию установлен последний вариант. Переключать его не требуется. Параметр Language может менять язык интерфейса с понятного английского на непонятные китайский, немецкий и французский. Людям, которые знают эти языки лучше, чем английский, эта настройка может пригодиться. Мы же продолжим рассматривать англоязычный интерфейс.

Следующие пункты отвечают за подключенные к SATA-портам диски и приводы. Чаще всего таковые корректно обнаруживаются автоматически, и менять в пунктах SATA X, где X – номер порта, ничего не нужно.

Следующий за ними раздел называется Storage Configuration и, как несложно догадаться, имеет самое прямое отношение к настройке дисковой подсистемы. Зайдя в него, можно обнаружить пункты SATA Configuration (допустимые значения: Enhanced, Compatible и Disabled) и Configure SATA as (можно установить на IDE, ACHI или RAID). Очевидно, похожие по названию параграфы меню отвечают за разные вещи, но что именно делает каждый?

SATA Configuration позволяет, во-первых, отключить распаянный на матплате SATA-контроллер (здорово, правда?), выбрав Disabled, во-вторых, установить принятый при использовании современных операционных систем режим Enhanced, в-третьих, перевести дисковую подсистему в совместимый со старыми ОС (Windows 95, 98, Me) режим (Compatible). Причем в этом режиме можно работать и на новых системах, но количество дисковых устройств, подключенных к SATA-контроллеру, будет ограничено четырьмя. Старые ОС не могли представить себе, что их может быть больше (считалось, что есть максимум два канала IDE, на два устройства каждый).

Configure SATA as позволяет показывать операционной системе диски в виде IDE-устройств (тогда даже при работе под Windows 2000 или XP не возникнет проблем и не потребуются дополнительные драйверы), для чего надо выбрать значение IDE. Если вы используете ОС, которая это позволяет, можно установить продвинутый режим ACHI (Advanced Host Controller Interface), в котором можно задействовать технологию NCQ (естественная очередь команд), горячее подключение и другие прогрессивные фишки. Третий режим служит, как и следует из названия, для создания дисковых массивов.

RAID расшифровывается как «Redundant Array of Independent Disks», то есть избыточный (имеется в виду по надежности) массив независимых дисков (уточню, что режим RAID 0 является исключением – он не более, а менее надежный, чем одиночный винт). Для настройки массива надо после активации этого режима войти в утилиту настройки RAID-контроллера, для чего на данной матплате следует во время прохождения POST нажать Ctrl + I.

Два оставшихся пункта, Storage Configuration, Hard Disk Write Protect и SATA Detect Time out, отвечают, соответственно, за защиту дисков от записи (естественно, лучше не активировать ее) и время поиска компьютером устройств дисковой подсистемы по включении. Чем меньше это время, тем быстрее загрузка, а увеличивать его имеет смысл, если диски или приводы по каким-то причинам не успевают определиться при прохождении POST.

Если SATA-устройства перевести в ACHI-режим, в меню появится еще один пункт – ACHI Settings. В нем будет задаваться таймаут запуска с оптических носителей (ACHI CD / DVD Boot Time out) от 0 до 35 с, шаг 5 с. Еще в нем появятся субменю вида SATA X, в которых можно будет выключить самодиагностику (установить SMART Monitoring в положение Disabled) или само дисковое устройство, точнее отвечающий ему SATA-порт (SATA port X для этого требуется перевести из Auto в Not Installed).
Разобравшись с режимами дисковой подсистемы, мы можем вернуться на уровень выше в меню и посмотреть что к чему в пунктах SATA X (X – номер порта). Да, менять там почти никогда ничего не следует, однако познакомиться с этими субменю все равно не помешает.

Итак, Type – это вид устройства. Можно принудительно задать CD-ROM или ARMD (ATAPI Removable Media Device, подразумеваются ZIP-дисководы, магнитооптические приводы и тому подобная экзотика).

LBA / Large Mode отвечает за поддержку винтов объемом более 504 Мбайт, и потому из двух возможных значений настоятельно рекомендуется выбрать Auto, а не Disabled.

Block (Multi-Sector Transfer) позволяет отключать передачу нескольких секторов по 512 байт за раз и таким образом сильно снижать скорость работы диска (за один проход будет передаваться один сектор). Для мало-мальски современных хардов с SATA-интерфейсом выбирать Disabled не имеет смысла. Оставляйте как есть.

PIO Mode позволяет навязать диску устаревший режим обмена данными, так как автоматически любой современный НЖМД работает в режиме PIO 4, самом быстром из пяти (с 0 по 4). PIO расшифровывается как «Programmed Input / Output Mode», то есть «программируемый режим ввода / вывода». Менять умолчальное Auto нет нужды.

DMA Mode чуть ближе к нашему времени, чем PIO. DMA значит «Direct Memory Access», «прямой доступ к памяти». Этот режим дополняет PIO и обладает куда большей скоростью (самый быстрый PIO 4 – 16,6 Мбайт/с, самый быстрый DMA – 133 Мбайт/с). Естественно, все современные винты, особенно с интерфейсом SATA, работают в самом шустром UDMA 6. На всякий случай уточню, что SWDMA (Single-Word DMA) – самый тормозной режим, MWDMA (Multi-Word DMA) – это вам тоже не галоп, но все же будет порасторопнее, а UDMA заслуженно именуется «Ultra DMA», потому что быстрее остальных. При этом чем больше цифра после названия режима, тем выше скорость. Переключать значение Auto на что-либо нецелесообразно.

SMART Monitoring – штука полезная и вполне себе современная. Технология позволяет отслеживать состояние жесткого диска, измеряя разные его параметры и отмечая, как они меняются со временем. Из этих данных программы S.M.A.R.T. (Self Monitoring Analysing and Reporting Technology, технология самонаблюдения, анализа и отчетности) делают вывод о том, сколько еще проживет жесткий диск и не пора ли озаботится бэкапом данных и заменой винта. Если S.M.A.R.T. почему-то не включается автоматически (современные харды дружат с ним в обязательном порядке), можно попробовать выставить «Enabled» вручную. В остальных случаях стоит довериться режиму Auto. Принудительно выключать самодиагностику вряд ли понадобится, но возможность такая есть.

И наконец, 32 Bit Transfer задает 32-битный в случае Enabled и 16-битый в случае Disabled режим передачи данных по шине PCI или внутренней шине чипсета. 16-битный режим, естественно, не рекомендуется.

В главном меню BIOS остался всего один пункт – это System Information, то есть общие сведения о системе. В нем показываются номер версии микрокода BIOS и дата ее выпуска, модель установленного процессора и его тактовая частота, количество ОЗУ в системе. Поскольку на рассматриваемой матплате имеется две микросхемы BIOS, здесь же написано, какая из них используется, каким образом она выбрана (аппаратно, то есть джампером, или программно, из соответствующего раздела BIOS). Отображаются и названия для первого и второго BIOS.

Больше в разделе основных настроек BIOS ничего нет (смайл). Но даже перечисленного достаточно, чтобы оценить обилие возможностей. Да, большинство параметров (таких как тонкие настройки дисковой подсистемы) лучше здесь не менять, так как ничего, кроме падения скорости работы, это не вызовет, но перевести, например, устройства в AHCI-режим можно и даже полезно. Настройка RAID-массивов тоже может понадобиться.

Меню для гурманов
Сообщив, что при заходе в AMIBIOS появится открытая вкладка Main, я несколько слукавил. В общем случае так оно и будет, но на некоторых матплатах, и в частности на ASUS Rampage II Extreme, вы сначала попадете в специальный «командный пункт», где собраны инструменты оверклокера; а вкладку Main сдвинули на второе место. И это разумно, потому что Extreme Tweaker (именно так в данном случае назван разгонный инструментарий) востребован куда как чаще. Отмечу, что функции разгона, а также мониторинга частот, напряжений и температур каждый производитель матплат реализует немного по-своему. Поэтому описание таковых для одной материнки поможет освоиться с оверклокингом и приобрести некий кругозор, но не послужит дословным руководствам для тонкой настройки любого ПК.

Две строчки в самом верху страницы говорят вам о том, на какой частоте после применения заданных вами настроек BIOS заработают центральный процессор и оперативная память. Они подписаны: «Target CPU Frequency» и «Target DRAM Frequency» соответственно.

Четыре следующих параметра отвечают за автоматический разгон. CPU Level up позволяет переключить ЦП на частоту 3,6 (i7-crazy-3,60G) либо 4,0 ГГц (i7-crazy-4,00G), причем остальные связанные с частотой процессора параметры, такие как напряжения на разных узлах, заботливая мамка подстроит сама. Примерно такой же эффект, только на память, оказывает, как несложно догадаться, Memory Level up – можно задать частоту ОЗУ в 1600 или 1800 МГц, остальные параметры система подберет. Одновременно использовать оба Level Upа нельзя. Следующий пункт отвечает как раз за выбор режима разгона.

Называется он AI Overclock Tuner и позволяет выбрать следующее: Auto (сохраняет штатные частоты и напряжения), X.M.P. (то есть eXtreme Memory Profile, нештатный профиль памяти, позволяет выбрать Profile #1 или #2, первый с агрессивными таймингами, второй – с повышенной частотой), CPU Level up (приоритет процессора), Memory Level up (приоритет памяти), ROG Memory Profile (позволяет выбрать один из трех профилей памяти: Speedy, Flying и Lightning, то есть «быстрый», «летящий» или «молниеносный»), и наконец, самый интересный режим Manual – то есть «ручной».

В ручном режиме можно вести настройку быстродействия «от процессора» (OC from CPU Level up), «от памяти» (OC from CPU Level up) и «от балды», в смысле в полностью ручном режиме, руководствуясь только собственными соображениями. Рассмотрим по порядку, что поддается регулировке «ручками».

CPU Ratio Setting, как и следует из названия, устанавливает значение множителя камня. Множитель – это целое или полуцелое число, на которое умножается базовая частота, чтобы в результате получилась тактовая частота ЦП. У большинства процессоров максимальный множитель ограничен, однако у камней серий Extreme от Intel и Black Edition от AMD множитель разблокирован – его можно увеличивать выше штатного значения. Иногда множитель требуется уменьшить, например с целью увеличения частоты шины процессора или памяти при неизменной частоте самого ЦП (в частности, когда достигнут его потолок).

CPU Configuration отображает информацию о камне (показывает имя производителя, частоту, базовую частоту, размеры кэша 1-го, 2-го и 3-го уровней, максимальный множитель, текущий множитель, CPUID). Кроме того, он, опять-таки, позволяет менять множитель (CPU Ratio Setting) и включать или выключать разные поддерживаемые камнем технологии. Для чего служат эти технологии, посмотрим во второй части статьи. А пока разберемся со средствами для оверклокеров.

Камертоны
BCLK Frequency – это самый важный пункт для разгонщика, так как он позволяет изменять внутреннюю базовую частоту (Internal Base Clock). Частота процессора вычисляется как произведение базовой частоты и множителя CPU. Таким образом, если максимальный множитель камня зафиксирован (а так чаще всего и есть), подъем базовой частоты – единственный путь оверклокинга камня. Надо только помнить, что она недаром названа базовой, – это своеобразный камертон всей системы, на нее ориентируются кроме ЦП и оперативная память, и шина QPI (подробнее о ней чуть позже), и северный мост (внеядерные компоненты ЦП). Поэтому, увеличивая базовую частоту, следует помнить это и, при необходимости, понижать множители переразогнанных компонентов. Из-за этого оверклокинг и является занятием творческим (смайл). Задать Base Clock можно, вбив нужное число с клавиатуры либо отрегулировав текущее значение кнопками «+» и «-». По умолчанию опорная частота (иногда Base Clock переводят так) составляет 133 МГц.

Тот же принцип, кстати, действует и при разгоне камней AMD. А вот на платформе LGA 775 частота процессора зависит от его внешней шины FSB.

PCIE Frequency позволяет менять частоту шины PCI Express. Учитывая, что для разгона видеокарт изобрели более вменяемые методы, хотя бы ту же программу RivaTuner, особого смысла двигать этот параметр нет. Но попробовать можно. Помните только, что увеличение данной частоты выше штатного значения быстро приводит к нестабильности и задирать ее выше 115 МГц, право, не следует.

DRAM Frequency – это частота динамической оперативной памяти (Dynamic Random Access Memory). Никакой другой в ПК не бывает уже очень давно. К сожалению, задать желаемую частоту, просто вбив значение с клавиатуры, не получится – есть фиксированные множители, то есть частоту ОЗУ надо выбрать из нескольких вариантов. Естественно, при разгоне этот пункт меню понадобится почти наверняка.

UCLK Frequency – это частота работы внеядерных компонентов процессора (Uncore Clock Frequency), то есть контроллера памяти, встроенного в ЦП. Она тоже зависит от базовой частоты и к тому же еще и от частот памяти. При потере стабильности на высоких частотах процессора можно попробовать вручную замедлить контроллер памяти – может помочь. Но следует помнить, что его частота должна превышать герцовку ОЗУ как минимум вдвое.

QPI Frequency – это частота внешней процессорной шины. Поскольку она тоже зависит от BCLK, есть вероятность того, что ее придется понизить принудительно при потере стабильности. Кстати, шина QPI (Quick Path Interconnect, то есть «быстрый путь взаимосвязи») была сделана по аналогии с HyperTransport, внешней процессорной шиной на платформах AMD. Поэтому, встретив в BIOS матплаты под камни AMD множитель шины HyperTransport, вы будете знать, для чего он нужен, и сможете уменьшить его при необходимости.

Чувство такта
DRAM Timing Control позволяет управлять задержками оперативной памяти. Дело в том, что ОЗУ синхронизирует операции с данными с сигналом тактового генератора. Задержки между этими операциями выражаются целым числом тактов и называются таймингами. По умолчанию значения этих параметров берутся из микросхем SPD на модулях памяти и привязаны к частотам ОЗУ. Их уменьшение приводит к увеличению быстродействия или к потере стабильности, то есть является методом разгона. Основных таймингов памяти пять: CL, tRCD, trp, tras и CR.

DRAM CAS# Latency называется также CL. Это задержка между подачей команды на чтение или запись столбца и ее выполнением. Сильно влияет на быстродействие и устойчивость системы, подбирается индивидуально.

DRAM RAS# to CAS# Delay, она же tRCD. Задержка между сигналом RAS# на выбор строки и CAS# на выбор столбца. Тоже можно попробовать понизить, однако стабильность после этого надо тщательно проверить.

DRAM RAS# PRE Time, или trp, – это задержка, обусловленная перезарядкой банка памяти. Дело в том, что оперативка состоит из конденсаторов, которые имеют обыкновение разряжаться, причем довольно-таки быстро. И поэтому предусмотрен механизм их зарядки. Этот параметр определяет, сколько на нее уходит тактов. Если выставить слишком малое значение, заряды емкостей будут теряться вместе с данными, которые ими обозначены.

DRAM RAS# ACT Time, или, что то же самое, tras, являет собой минимальное время активности строки. Тут следует сказать, что память устроена как таблица со строками, столбцами и ячейками на их пересечениях. При этом в результате физического и логического устройства современной ОЗУ при необходимости что-то сделать с ячейкой памяти считывается вся строка. Причем пока ПК работает с одной строкой памяти, он не может ничего сделать с другими. Сначала он должен дезактивировать строку, то есть оставить ее в покое. А сделать это он может не раньше, чем истечет задержка tras. Поэтому в некоторых задачах, там, где ПО приходится иметь дело с данными, раскиданными в беспорядке по всей памяти, этот тайминг существенно влияет на скорость работы.

DRAM RAS# to RAS # Delay (сокращается как trrd) – один из неосновных таймингов. Задает минимальное время между командами на считывание строк разных банков памяти (память в соответствии со своей архитектурой подразделяется на банки). Параметр можно не менять, толку все равно будет чуть.

DRAM REF Cycle Time (trfc) – это минимальное время между двумя циклами перезарядки. Относится к неосновным таймингам.

DRAM Write Recovery Time (сокращенно Twr) – это время, которое должно пройти после записи до начала перезарядки памяти. Тайминг неосновной, да и подобрать его непросто.

DRAM READ to PRE Time (сокращенно Trtp) – почти то же, что и предыдущий пункт, только после операции не записи, а чтения. Тоже ни разу не основной параметр.

DRAM FOUR ACT WIN Time (tfaw) – это минимальное время активности четырех строк из разных банков памяти. Неосновной тайминг.

DRAM WRITE to READ Delay (twtr) – как явствует из названия, задержка между процессами записи и чтения (точнее, окончанием записи и подачей команды на чтение).

DRAM Timing Mode – это, как ни парадоксально, самый важный тайминг. Чаще он называется CR (tcr), или Command Rate, составляет 1, 2 или 3 такта. Это задержка между подачей любой команды контроллером памяти и началом ее выполнения. Если память достаточно качественная, чтобы выдерживать режим 1T (в данном случае он обозначен почему-то 1N), лучше его и установить. CR в три такта – наименее желательный вариант. Почему же такую важную вещь не рассмотрели в самом начале?

По элементарной причине – в меню BIOS, который я сейчас расписываю по пунктам, эта важная настройка отодвинута достаточно далеко от начала страницы в пользу многочисленных не шибко полезных второстепенных таймингов. Из каких соображений так сделано, неизвестно, однако стоит иметь в виду, что нужные опции BIOS находятся не всегда на самом видном месте.

DRAM Round Trip Latency on CHX, где X = A, B, C, – это задержка между отправкой команды с контроллера памяти и прибытием отклика на нее на соответствующем канале памяти (A, B или C). Она складывается из множества таймингов, и регулируется не ее абсолютная величина, а ускорение (Advance n Clock, то есть «ускорить на n тактов») либо замедление (Delay n Clock, «задержать на n тактов»). Эта настройка должна влиять на скорость и стабильность работы компьютера, но как именно она функционирует, сказать сложно: ведь неизвестно, за счет каких слагаемых, то есть более простых, не составных таймингов, меняется эта величина. Можно поэкспериментировать. Управление этим параметром реализовано далеко не на всех матплатах, но это нестрашно – того же эффекта можно достичь, «поиграв» основными таймингами. В данном случае пунктов три – по числу каналов памяти.

Помните о том, что память состоит из нескольких банков? Так вот, банки бывают логическими и физическими (физические подразделяются на логические). Физический банк называют также «rank» (на русский это можно перевести как «ранг», но никто не переводит, говорят: «ранк»). К чему это я? А вот к чему…

DRAM WRITE to READ Delay (DD) определяет задержку между записью и чтением на разных модулях (DD – это Different Devices, разные устройства) памяти.

DRAM WRITE to READ Delay (DR) руководит величиной временного интервала между записью и чтением на разных ранках, то есть физических банках памяти. DR – это Different Ranks, разные, стало быть, ранки.

DRAM WRITE to READ Delay (SR) задает такую же по смыслу величину, только для операций над одним ранком (а SR – это, разумеется, Same Rank, «тот же самый ранк»).

DRAM READ to WRITE Delay (DD), (DR) и (SR) отвечают за настройку задержки между чтением и записью для тех же трех случаев соответственно.

DRAM READ to READ (DD), (DR) и (SR) и DRAM WRITE to WRITE (DD), (DR) и (SR) – это еще шесть настроек, они позволяют задать количество тактов от чтения до чтения и от записи до записи в тех же случаях.

Все эти пункты меню, общим количеством 12 штук, могут быть полезны для тонкой настройки подсистемы памяти, однако экспериментально подобрать их – задача непростая и решается медленно и вдумчиво. Они есть далеко не на всех матплатах и не относятся к основным настройкам, но энтузиасту пригодятся – при условии, что у него есть свободное время.

Напряжения
EPU II Phase Control – это фирменная технология ASUS. Она позволяет динамически отключать фазы питания процессора при падении нагрузки на него. Аналогичные технологии есть и у других разработчиков матплат. Толк от них сомнительный. Режим Full Phase обеспечивает максимум стабильности, особенно в разгоне, так как в нем фазы не отключаются; на нем лучше и остановить свой выбор. Хотя для энергоэффективного медиацентра подобную фичу лучше активировать (перевести в Auto) – его процессор не так часто нуждается в усиленном питании.

Load-Line Calibration позволяет скомпенсировать провал напряжения на процессоре при увеличении нагрузки на него (Vdroop). Напряжение проседает из-за того, что проводники, по которым на камень подается питание, имеют собственное сопротивление, достаточное для того, чтобы при увеличении тока падение напряжения на них было значительным (согласно закону Ома, оно составит U = IR). При разгоне лучше включить эту опцию принудительно, но перед этим нелишне выяснить, правильно ли она функционирует на вашей модели матплаты, потому как она бывает реализована с ошибкой и тогда не помогает, а мешает.

CPU Differential Amplitude задает разностную амплитуду тактового сигнала. Это значит, что по умолчанию разница между минимальным и максимальным напряжением тактового сигнала равна 610 мВ (при значении данного параметра Auto). С возрастанием тактовой частоты повышается не только скорость работы камня, но и количество помех, из-за которых проц может «прослушать» тактовый сигнал, что приведет к ошибкам. Если увеличить амплитуду с умолчального значения хотя бы до 700 мВ, помехи удастся перекрыть. Опцией можно и нужно пользоваться при потере стабильности при разгоне.

Extreme OV позволяет юзеру задирать напряжения на устройствах очень высоко. При этом выживание процессора и прочего железа производителем не гарантируется, поэтому пользоваться этой возможностью стоит только при экспериментах с экстремальным охлаждением, например жидким азотом. Впрочем, такой подход никто не отменял, и для установки рекордов фишка может оказаться весьма полезной.

CPU Voltage регулирует не что иное, как напряжение питания камня. Подкормить ЦП бывает нужно для стабилизации в разгоне. Перед тем как поднимать напряжение на ядрах выше штатного значения, обязательно надо выяснить, какое максимальное значение признано безопасным для разгоняемой вами модели камня, и не превышать его. Между прочим, эту функцию можно использовать для снижения вольтажа на процессоре и тем самым его нагрева в том же медиацентре.

На данной модели матплаты BIOS помечает потенциально опасные для ЦП напряжения красным цветом, а существенно завышенные – желтым. Такая полезная индикация попадается часто, но не везде.

CPU PLL Voltage – это напряжение питания системы фазовой автоподстройки частоты (Phase Locked Loop). Его повышение должно способствовать более успешному разгону, однако, если вы решились на него, озаботьтесь охлаждением подсистемы питания процессора – она будет сильно греться.

QPI / DRAM Core Voltage регулирует напряжение на контроллере памяти и шине QPI. Их подкормка может быть нужна, если данные узлы стали «бутылочным горлышком» при разгоне. Похожая настройка, кстати, встречается и на платформах AMD (только там она называется HT Voltage) и тоже бывает полезна.

IOH Voltage отвечает за питание северного моста. Как и другие «гастрономические излишки», способствует уверенной работе на завышенных клокингах. В данном случае, как и в предыдущем, действовать надо осторожно, чтобы не сжечь процессор. Перед началом экспериментов следует выяснить пределы, за которые эти напряжения выводить опасно.

IOH PCIE Voltage меняет напряжение на тех линиях шины PCIE, что предоставляются северным мостом. Нужды этим пользоваться нет.

IСH Voltage позволяет регулировать напругу на южном мосту матплаты. Зачем это может понадобиться, сказать сложно. Лучше не трогать эту настройку.

ICH PCIE Voltage дает возможность подкормить те линии PCIE, которые обязаны существованием южному мосту. Поскольку разгон PCIE мы сочли нецелесообразным (см. выше), параметр этот можно смело оставлять в покое.

DRAM Bus Voltage управляет напряжением на памяти. Штука необходимая, ибо у многих современных оперативно-запоминающих модулей даже самый что ни на есть штатный вольтаж выше общепринятой нормы. Да и для разгона ОЗУ приподнять это значение ни разу не мешает.

DRAM REF Voltage служит для задания референсных амплитуд напряжения на каждом из трех каналов контроллера памяти. Штука тут, опять-таки, в появлении помех при работе оперативки на высоких частотах. Если увеличить референсную амплитуду напряжения, то есть разницу в вольтаже между нулем и единицей, памяти будет проще воспринимать данные и команды. При этом с помощью DRAM DATA REF можно настроить шину данных, а DRAM CTRL REF поможет подрегулировать шину команд. На большинстве матплат эти пункты не разделяют, а вот каналы памяти почти всегда регулируются независимо друг от друга.

Гоночная амуниция
Debug Mode позволяет выбрать, в каком виде выводить сообщения об ошибках. Материнка, взятая в качестве примера, может выдавать на специальный экран не только POST-коды (две шестнадцатеричные цифры, которые надо расшифровать с помощью инструкции или сайта производителя), но и осмысленные сообщения на английском. Возможность полезная, но специфическая, встречается нечасто. Даже присутствие простого индикатора POST-кодов на матплате – уже большой плюс. В данном же случае, выбрав String, при глюке получаем англоязычное разъяснение. Выбрав Code – две цифры, от 0 до F каждая.

Keyboard TweakIt Control включает и отключает управление технологией TweakIt с клавиатуры. Технология эта представляет собой тот самый экранчик для вывода сообщений POST и других целей, а также управляющие кнопки на матплате. С помощью нее можно быстро смотреть и менять, не заходя в BIOS, параметры системы – частоты и напряжения. Предназначено это хозяйство для удобства разгона, проведения бенчсессий и тестов. Встречается нечасто и стоит дорого. У других фирм есть аналоги.

CPU Spread Spectrum (распределенный спектр ЦП) позволяет уменьшить количество электромагнитных помех, но иногда затрудняет разгон по опорной частоте BCLK. Эффект достигается сглаживанием пиков тактового сигнала, из-за чего и могут появиться проблемы с распознаванием тактов устройствами. Принудительно активировать эту несколько сомнительную опцию стоит разве что при обработке звука, чтобы снизить влияние высокочастотн

Сохранение и защита доступа

Функции, связанные с сохранением и восстановлением параметров, а также защиты доступа к компьютеру, находятся справа от главного меню BIOS (рис. 12). Их выбор приводит к немедленному выполнению (не открывают вкладки меню).

Опция Load Optimized Defaults, сбрасывает BIOS на настройки установленные производителем по умолчанию. Вы можете использовать эту функцию, если не уверены что BIOS настроен правильно, если компьютер работает нестабильно.
[spoiler show=»Рис.12 Функция Load Optimized Defaults»]

Настройка BIOS материнской платы

[/spoiler]
С помощью параметра Set Supervisor Password и Set User Password вы можете установить пароль для доступа к BIOS, а также требуемый для загрузки операционной системы. При выборе Save and Exit Setup текущие настройки будут сохранены, а компьютер перезагружен.

Функция Exit Without Saving перезагружает компьютер, но без сохранения сделанных вами изменений.

Intel Nehalem, Core i7 или Бархатная революция №2

Официальный анонс Intel Core i7, первых процессоров архитектуры Nehalem, стал одним из главных событий в мире высоких технологий прошедшего 2008 года. Чем больше появлялось разнообразной информации касательно нового поколения CPU, тем чаще в кругах специалистов звучало мнение, что Nehalem с точки зрения эволюции настольных процессоров является шагом вперед и, одновременно, в сторону, если хотите — разбегом перед решительным прыжком.

Разработчики Core i7 заложили в него прочный технологический фундамент, частично пожертвовав производительностью в краткосрочной перспективе. Практическая ценность таких новшеств как вторая редакция технологии Hyper-Threading и тесно связанная с ней сложная иерархия кэш-памяти сегодня проявляется лишь частично. С одной стороны, в этом есть доля вины софтверных компаний, не заботящихся об оптимизации программ под многопоточные вычисления, а с другой стороны сказывается четкая серверная направленность микроархитектуры Nehalem.

Впрочем, оставим историко-философский аспект разработки Nehalem любителям околонаучных дискуссий и перейдем к непосредственному изучению Core i7. Начнем с теории и закончим практикой. Что из этого приятное, а что — полезное, решать нашим читателям.

Intel Nehalem

Процессорный кристалл Core i7

Процессор Core i7 (Bloomfield, 45 нм) включает в себя: четыре физических ядра, распределенных на 8 виртуальных потоков с помощью технологии Intel Hyper-Threading, трехуровневый массив ячеек кэш-памяти, новый системный интерфейс Quick Path Interconnect, интегрированный контроллер памяти DDR3, блок очереди команд (на схеме — «Queue») и блок операций ввода-вывода («Miscellaneous I/O»). Кроме того, в структуре серверных четырехъядерников Nehalem EP найдет применение второй порт QPI для связи между двумя и более процессорами на одной материнской плате.

Архитектура Intel Nehalem

В отличие от Core 2 Quad — мультичипового модуля из пары Core 2 Duo, дизайн Core i7 изначально предполагает наличие четырех ядер в одном процессорном кристалле. Количество физических ядер легко варьируется в зависимости от намеченной цели. Например, во второй половине 2009 г. Intel планирует выпуск восьмиядерных CPU Nehalem EP, а вначале 2010-го — двухъядерных процессоров Havendale LGA1156 с интегрированной графикой.

Архитектура Intel Nehalem

Строение каждого из четырех ядер спроектировано согласно нижеприведенной схеме:

Архитектура Intel Nehalem

  • reservation station (буфер резервирования операций) — с 32 до 36 μops;
  • load buffers (буферы загрузки операций) — с 32 до 48 μops;
  • store buffers (буферы хранения операций) — с 20 до 32 μops;
  • out of order scheduling window (буфер внеочередного выполнения операций) — с 96 до 128 μops.

Intel Hyper-Threading Technology

Спустя четыре года после маловыразительного дебюта технологии Hyper-Threading (HT) в структуре настольных процессоров Pentium 4 (Northwood), специалисты Intel вернулись к концепции многопоточной обработки данных.

Архитектура Intel Nehalem

Эффективность HT по-прежнему зависит от конкретного приложения. Программы, использующие большой объем разнотипного кода (например, базы данных), практически идеально подходят Core i7, в тоже время основная масса игр демонстрирует 0,5-2-процентное падение фреймрейта. Впрочем, список программного обеспечения, адаптированного к особенностям Hyper-Threading, будет неуклонно расширяться.

Новая иерархия кэш-памяти, Integrated Memory Controller и Quick Path Interconnect

Встроенный контроллер оперативной памяти (IMC), разделяемый кэш третьего уровня и высокоскоростной интерфейс QPI (аналог HyperTransport) — все это было пройдено в процессорах AMD K8/K8L/K10 и теперь плавно перекочевали в ядро Bloomfield.

С переносом контроллера памяти из северного моста в тело CPU уменьшилась зависимость процессора от постоянного увеличения объема кэш-памяти. Иерархия кэша в Core i7 целиком подчинена многопоточным вычислениям: унифицированный L2 кэш урезан до 256 килобайт на каждое ядро, а основной акцент сделан на 8 МБ разделяемого кэша третьего уровня. Последний содержит все инструкции и данные из L1/L2 cache для уменьшения трафика запросов.

Архитектура Intel Nehalem

Ввиду того, что инженерам Intel изначально не удавалось поднять тактовую частоту Core i7 до конкурентоспособного уровня, латентность L1 кэша была увеличена по отношению к Core 2 на базе Penryn с 3 до 4 тактов. Данный маневр частично повлиял на итоговую производительность. Кэш-память второго уровня, наоборот, стала быстрее и экономичнее: вместо 15 тактов на выполнение одной операции уходит 11 тактов.

Встроенный контроллер оперативной памяти процессоров Core i7 поддерживает трехканальный (192-bit), двухканальный (128-bit) и одноканальный (64-bit) режимы работы памяти. В плане эффективности первые два смотрятся наиболее предпочтительно. Сразу отметим невозможность появления в будущем материнских плат для Core i7 со слотами DDR2: в отличие от AMD Phenom II, контроллер памяти Bloomfield поддерживает только модули стандарта DDR3.

С приходом процессоров нового поколения заканчивается эра системной шины FSB. На смену ей приходит высокоскоростной интерфейс Quick Path Interconnect (QPI):

Архитектура Intel Nehalem

Чипсет для процессоров Core i7

Процессоры Intel Core i7 предназначены для работы с материнскими платами, оснащенными разъемом LGA1366, первые из которых будут основаны на чипсете Intel X58 Express (Tylersburg). Новый набор системной логики состоит из северного моста X58 IOH и южного моста ICH10/ICH10(R).

Чипсет Intel X58

Материнские платы c 1366-контактным процессорным разъемом официально поддерживают модули оперативной памяти DDR3 частотой 800/1066 МГц, однако на практике Core i7 успешно взаимодействует и с более быстрыми комплектами RAM. Количество слотов DDR3 обычно варьируется от трех до шести.

Intel X58 Express программно совместим с технологиями NVIDIA SLI и ATI CrossFire. Впрочем, поддержка нескольких видеокарт GeForce связана с затратным для производителя материнских плат процессом сертификации. Так что присутствие NVIDIA SLI является лишь опцией для материнских плат премиум-класса. Подробнее о конфигурациях SLI можно прочитать в одном из наших предыдущих материалов.

Южный мост ICH10(R) сегодня широко используется в составе чипсета Intel P45 Express, поэтому его возможности хорошо известны энтузиастам.

Процессоры Intel Core i7

Основные моменты архитектуры Nehalem мы рассмотрели и теперь перейдем к готовым изделиям на ее базе. Новые процессоры поначалу будут представлены на рынке высокоуровневыми моделями, что и не удивительно. Обычно выход очередных решений подразумевает продукты hi-end-класса, так как производителю необходимо удовлетворить спрос на новинки и, в какой-то степени, покрыть расходы на разработку. Да и производители материнских плат не против подзаработать на этом поприще.

Core i7

На данный момент времени компания Intel предлагает всего три модели процессоров на базе ядра Bloomfield, которые отличаются между собой рабочей частотой ядер и частотой шины QPI: Core i7-920 (2,66 ГГц), Core i7-940 (2,93 ГГц) и Core i7-965 Extreme Edition (3,2 ГГц).

Intel Core i7-965 Extreme Edition Intel Core i7-940 Intel Core i7-920
Разъем LGA1366 LGA1366 LGA1366
Техпроцесс 45-нм, с применением high-k диэлектриков 45-нм, с применением high-k диэлектриков 45-нм, с применением high-k диэлектриков
Число ядер 4 (8 потоков) 4 (8 потоков) 4 (8 потоков)
Номинальная частота 3,20 ГГц 2,93 ГГц 2,66 ГГц
Объем L1 кэша 4 x (32+32) КБ 4 x (32+32) КБ 4 x (32+32) КБ
Объем L2 кэша 4 x 256 КБ 4 x 256 КБ 4 x 256 КБ
Объем L3 кэша 8 МБ 8 МБ 8 МБ
Множитель 24х, свободный 22х, заблокирован на повышение 20х, заблокирован на повышение
Поддерживаемый тип памяти DDR3 800/1066/1333 DDR3 800/1066 DDR3 800/1066
Пропускная способность QPI 6,4 ГТ/с 4,8 ГТ/с 4,8 ГТ/с
Номинальное напряжение 1,20 В 1,20 В 1,20 В
TDP 130 Вт 130 Вт 130 Вт
Стоимость $999 $562 $284

Процессор Core i7-965 Extreme Edition, как видно из его названия, рассчитан на энтузиастов и оверклокеров и кроме высокой частоты имеет полностью разблокированный множитель, что позволяет его разгонять без проведения серьезных манипуляций с шиной QPI и остальными компонентами системы.

Что касается самой шины QPI, то ее частота формируется за счет умножения определенного коэффициента на частоту тактового генератора, равную в номинале 133 МГц.

Core i7-920

Ее также называют опорной частотой шины QPI, QPI bclk или просто Bclk (утилита CPU-Z определяет ее как Bus Speed). По своему назначению она полностью соответствует частоте тактового генератора в современной платформе AMD — за счет нее формируется частоты ядер, кэш-памяти, контроллера памяти и частота системной памяти. Например, частота Core i7-920 получается умножением коэффициента 20х на 133 МГц. Естественно, при разгоне CPU путем повышения Bclk будут расти частоты всех блоков процессора, шины QPI и памяти, что может сказаться на их стабильной работе. Частота шины QPI для процессоров Intel Core i7-920 и Core i7-940 составляет 2,4 ГГц, что эквивалентно пропускной способности 4800 мегатранзакций в секунду (или 4,8 ГТ/с). Для Core i7-965 EE это значение соответствует 3,2 ГГц или 6,4 ГТ/с. Зная частоту QPI можно без проблем высчитать коэффициент умножения шины у каждого из процессоров: для Core i7-920 и Core i7-940 он равен 18, для Core i7-965 EE — 24.

Но частота шины Quick Path Interconnect не единственная проблема, с которой можно будет столкнуться при разгоне обычных Core i7. Дело в том, что в новых CPU кэш третьего уровня и контроллер памяти (данная часть процессора называется Uncore) работает на отличной от процессора частоте — по рекомендации Intel, частота этих блоков должна быть в два раза выше эффективной частоты памяти. Данный параметр изменяется в настройках BIOS Setup материнской платы (коэффициентом или выбором частоты).

Core i7-920

Отслеживать значения Uncore можно при помощи все той же утилиты CPU-Z — за это отвечает параметр NB Frequency в закладке Memory.

Из поддерживаемой памяти для младших Core i7 заявлена только DDR3-800/1066 (коэффициенты 6х, 8х), для Core i7-965 Extreme Edition этот список расширен до DDR3-1333 (коэффициент 10х).

За счет переноса части северного моста в CPU, его размеры несколько увеличились, как и количество контактов — теперь их 1366, а сам процессор стал немного продолговатым по сравнению с Core 2.

Core i7-920

Core i7-920

Процессорный разъем также претерпел изменений и кроме увеличенных размеров и количества контактов обзавелся усилительной пластиной с обратной стороны материнской платы, которая прижимается четырьмя болтами.

Socket LGA1366

Socket LGA1366

Из-за расширения функциональности тепловой пакет новых процессоров достаточно высок — 130 Вт, хотя и меньше на шесть ватт, чем у топовых Core 2 Quad с 12 МБ кэшем. При этом напряжение питания новинок составляет 1,2 В. Несмотря на это, для Core i7 теперь необходимы новые системы охлаждения, так как расстояние между монтажными отверстиями на материнских платах увеличилось с 72 до 80 мм относительно платформы LGA775. Соответственно увеличились и габариты кулеров. Обладателям коробочных версий Core i7 на этот счет особо переживать не придется, но при разгоне необходимо будет подыскать что-то поэффективней (или новое крепление для «суперкулеров»), так как процессоры на базе ядра Bloomfield имеют достаточно горячий нрав.

Для слежения за состоянием процессора, в нем был размещен специальный микроконтроллер Power Control Unit (PCU), который отвечает за мониторинг и регулирование показателей напряжения, силы тока и температуры ядер.

Power Control Unit

Кроме того, Core i7 обладает технологией Turbo Boost, которая позволяет автоматически увеличить частоту процессора при недостаточной загрузке ядер путем поднятия коэффициента умножения CPU на один пункт (при номинальной Bclk разгон составляет 133 МГц) или на два пункта, но только для одного ядра.

Turbo Boost

Единственное условие работы «турбированного режима» — уровень TDP не должен превышать номинального значения. Частота нашего тестового процессора Core i7-920 с активированной технологией Turbo Boost во время прохождения тестов равнялась 2800 МГц, что соответствовало «слабому» разгону. На основании этого можно предположить, что режим Turbo Mode работает не только при слабой нагрузке на процессор.

Core i7-920

Если при разгоне уровень TDP превысит 130 Вт коэффициент умножения CPU будет снижаться до того уровня, пока не нормализуется состояние процессора. В связи с этим для достижения высокой частоты придется либо отодвигать порог срабатывания защиты (на материнской плате Intel есть отдельные пункты для управления уровнем TDP и силы тока, проходящей через процессор) либо отключать защиту вовсе (например, на платах ASUS).

Наличие официального авторазгона будет полезно при работе технологии Hyper-Threading (или Simultaneous Multithreading — SMT, технология «одновременной мультипоточности»), так как некоторые приложения не способны задействовать все возможности процессора, а порой включение HT влечет за собой падение производительности системы. И в этом случае поднятие частоты CPU компенсирует этот недостаток. Как и ранее во времена Pentium 4 HT, операционная система видит логические и физические ядра как отдельные, и для процессоров Core i7 это количество достигает восьми штук.

Читайте также:  Исправление ошибки с библиотекой isdone.dll

Core i7-920

ASUS Rampage II Extreme

Для установки Core i7 необходимы новые материнские платы с разъемом LGA1366 на базе единственного пока набора системной логики под новую платформу — Intel X58 Express. Данный чипсет является высокоуровневым решением, и ждать дешевых продуктов на его основе пока не стоит, хотя он сам в производстве выходит не дороже X48. Тем более что некоторые производители материнских плат смогут сертифицировать свои решения для поддержки технологии SLI, либо установить дополнительный чип nForce 200 для этой цели, а это уже точно скажется на цене готового изделия.

В качестве компаньона для нашего тестового процессора Core i7-920 использовалась материнская плата ASUS Rampage II Extreme, которая является продолжением серии Republic of Gamers и правопреемницей Rampage Extreme на базе Intel X48 Express. Нашей целью не было серьезное изучение данного продукта, так как основной темой статьи является новая платформа в целом. Но мы все же постараемся максимально рассмотреть ASUS Rampage II Extreme как представителя X58.

Модель ASUS Rampage II Extreme
Чипсет Intel X58 + ICH10R
Socket LGA1366
Процессоры Core i7
QPI, МГц 3200/2400
Память 6 DIMM DDR3 SDRAM 1800(O.C.)/1600(O.C.)/1333/1066/800 (12 GB max)
Слоты PCI-E 3 PCI Express x16 (режимы 16+16+1 и 16+8+8)
2 PCI Express x1 (один для звуковой карты))
Слоты PCI 1
Количество подключаемых вентиляторов 8 (1x 4-pin, 7x 3-pin)
Порты USB 2.0 12 (6 разъемов на задней панели)
Порты PS/2 1
Порт LPT
Порт COM
Порты FireWire 2 (1 разъем на задней панели)
ATA-133 1 канал (два устройства, JMicron 363)
Serial ATA 6 каналов SATA II (ICH10R) + 1 канал SATA II + 1 eSATA (JMicron 363)
RAID 0, 1, 5, 10
Встроенный звук SupremeFX X-Fi на базе ADI AD2000B (7.1, HDA)
S/PDIF Коаксиальный + оптический
Встроенная сеть 2х Marvell 88E8056 (Gigabit Ethernet)
BIOS AMI BIOS
Форм-фактор ATX
Размеры, мм 305х269
Дополнительно Кнопки Power, Reset, Clear CMOS, управление LCD-Poster, возможность снятия показаний напряжений и световая индикация уровня напряжений основных узлов платы

Материнская плата поставляется в крупной коробке, выполненной в непривычной для ASUS красной гамме, на что сразу обратит внимание потенциальный покупатель. Хотя, для нашего рынка это не столь актуально, так как комплектующие либо лежат на витрине магазина уже распакованными, либо пылятся на складе пока не выпишет менеджер. Для удобства переноски коробка снабжена пластиковой ручкой.

ASUS Rampage II Extreme ASUS Rampage II Extreme

Как и у всех плат серии ROG упаковка Rampage II Extreme имеет откидывающуюся крышку с информацией о продукте, под которой скрывается окошко, через которое можно увидеть материнскую плату.

ASUS Rampage II Extreme

Комплект поставки разделен по двум коробкам: в одной находится плата, во второй — аксессуары к ней.

ASUS Rampage II Extreme

  • Инструкцию;
  • Диск с драйверами и ПО;
  • Шесть кабелей SATA;
  • Один переходник питания на два SATA-устройства;
  • Один кабель IDE;
  • Брикет с двумя USB и одним FireWire-портом;
  • Три выносных термосенсора;
  • Гибкий SLI-мостик;
  • Мостик для 3-Way SLI;
  • Два переходника для подключения мультиметра;
  • Набор коннекторов ASUS Q-Connector;
  • Вентилятор;
  • LCD-Poster;
  • Звуковая карта SupremeFX X-Fi
  • Задняя планка I/O с подсветкой.

ASUS Rampage II Extreme

Как видите, комплект не маленький, но и плата самая дорогая на рынке среди решений на базе Intel X58 Express. Пусть не удивляет наличие SLI-мостиков в комплекте — Rampage II Extreme поддерживает помимо технологии CrossFire еще и SLI «программным» методом.

Плата выполнена на текстолите фирменного черного цвета и по размерам чуть шире стандартных ATX-решений. Оформление Rampage II Extreme сделано в одном стиле, в отличие от недавних высокоуровневых продуктов компании, в которых соседствовали радиаторы различных «цветов и красок».

ASUS Rampage II Extreme

ASUS Rampage II Extreme

На обратной стороне платы прикручена та самая усилительная пластина, о которой мы упоминали в описании Socket 1366. Тут же расположена часть элементов от подсистемы питания процессора, которые позволяют снять тепловую нагрузку с лицевой стороны платы.

ASUS Rampage II Extreme

Подсистема питания процессора построена по 16-фазной схеме с использованием дросселей в броневых сердечниках и конденсаторов с твердым электролитом. Первое позволяет избавиться от высокочастотного писка катушек под нагрузкой системы, второе скажется на длительности эксплуатации изделия в жестких условиях. Такие же элементы установлены во всех цепях питания платы. Для питания памяти предусмотрено три фазы, силовые транзисторы которых расположены возле южного моста. Они охлаждаются общим радиатором для микросхем чипсета, объединенным посредством тепловой трубки с системой охлаждения силовых элементов питания процессора. При необходимости можно установить комплектный вентилятор на один из радиаторов MOSFET.

ASUS Rampage II Extreme

Кроме того, в подсистеме питания процессора и памяти также используются высококачественные конденсаторы производства Fujitsu емкостью 1000 мкФ, рассчитанные на напряжение 3 В.

ASUS Rampage II Extreme

Возле северного моста расположен модуль VTT CPU Power Card, отвечающий за питание контроллера памяти и шины QPI (часть северного моста в процессоре, которая называется Uncore, но у плат ASUS в BIOS Setup за это отвечает параметр QPI/DRAM).

ASUS Rampage II Extreme

Модуль представляет собой небольшую платку с отдельным трехфазным контроллером питания. Для охлаждения элементов установлен небольшой радиатор с логотипом серии Republic of Gamers и с синей подсветкой, которую без проблем можно отключить.

ASUS Rampage II Extreme

Радиатор над северным мостом является съемным и вместо него можно установить совместимый с ASUS Rampage II Extreme водоблок — пока это лишь MCW-NBMAX от Swiftech.

ASUS Rampage II Extreme ASUS Rampage II Extreme

Передача тепла от чипсета радиатору происходит через медную вставку, но судя по отпечатку на термопасте, прижим с одной стороны оставляет желать лучшего, так что, при установке водоблока придется следить за качеством монтажа.

ASUS Rampage II Extreme

В связи с использованием трехканального контроллера памяти в Core i7, материнские платы для этих процессоров будут оснащаться шестью, четырьмя или тремя слотами DIMM. На рассматриваемой плате установлено шесть разъемов, а максимальный объем памяти DDR3-800/1066/1333/1600 может достигать 12 ГБ. Можно использовать и два модуля — тогда будет функционировать лишь двухканальный режим, но после покупки ASUS Rampage II Extreme желательно обновить BIOS платы, так как с первой версией микрокода (достаточно часто продолжительное время на рынке присутствуют продукты со старой версией BIOS) наблюдаются проблемы с совместимостью с некоторыми комплектами памяти. Например, может теряться объем одной планки, как бы ни вставлялись модули в плату.

ASUS Rampage II Extreme

Рядом с разъемами DIMM расположены органы управления разгоном платы и кнопки включения/отключения и сброса системы.

ASUS Rampage II Extreme

Для удобства разгона необходимо подключить LCD-Poster к разъему возле задней панели, после чего будет возможность наблюдать за своими действиями на ЖК-экране.

ASUS Rampage II Extreme

Возле задней панели также есть разъем для подключения подсветки задней планки.

ASUS Rampage II Extreme

Пожалуй, одна из значимых «фишек» платы заключается в возможности снять показатели напряжений на основных компонентах системы при помощи обычного мультиметра, для чего выведены контакты возле органов управления разгоном. Тут же есть небольшие разъемы, куда можно подключить пару комплектных переходников для вольтметра.

ASUS Rampage II Extreme

В связи с возможностью установки трех видеокарт все разъемы для подключения периферии расположены по краям платы. Шесть разъемов SATA (ICH10R), и разъем IDE развернуты на 90°. Единственный канал параллельного интерфейса реализован за счет внешнего контроллера JMicron 363, который дополнительно поддерживает два канала SATA, разъем одного из которых установлен рядом с остальными, а второй канал выведен на заднюю панель в виде eSATA.

ASUS Rampage II Extreme

Рядом с ними распаяны чипы iROG, которые расширяют возможности системы при разгоне, контроле напряжений, управлении светодиодной индикацией состояния платы, среди которых уровень подаваемого напряжения на процессор, память и чипсет.

ASUS Rampage II Extreme

С нижнего края платы возле гребенок USB расположены две микросхемы BIOS и джампер Clear CMOS.

ASUS Rampage II Extreme

Для расширения функциональности дополнительно к трем разъемам PCI-E x16 на плате присутствуют один слот PCI, два PCI-E x1, один из которых отведен под звуковую карту SupremeFX X-Fi.

ASUS Rampage II Extreme

Графические интерфейсы способны работать в режиме «16+16+1» при установке двух видеокарт и «16+8+8» — при установки трех. Синие слоты снабжены удобными защелками, чего не скажешь о старых моделях материнских плат серии ROG, да и не только этой.

ASUS Rampage II Extreme

Задняя панель выглядит немного пустовато: один PS/2 для клавиатуры, шесть портов USB (еще шесть в виде гребенки на плате), по одному eSATA и FireWire и два RJ45, реализованных за счет двух гигабитных контроллеров Marvell 88E8056. Есть кнопка сброса настроек BIOS.

ASUS Rampage II Extreme

BIOS платы ASUS Rampage II Extreme

Учитывая переход на новую платформу, BIOS Setup материнских плат на базе Intel X58 Express обзавелся множеством неизвестных ранее параметров, которые в значительной степени влияют на уровень разгона и производительность процессоров Core i7. Естественно, от продукта к продукту наименование тех или иных параметров будет отличаться, но эффект при их изменениях будет один и тот же.

При входе в BIOS платы ASUS Rampage II Extreme, основанный на микрокоде AMI, нас сразу же приветствует раздел Extreme Tweaker, в котором сосредоточены все тонкие настройки системы, необходимые при разгоне. Ранее в платах ASUS первым пунктом стоял раздел Main, что вряд ли можно было назвать удобным, особенно при частой смене настроек во время разгона.

BIOS ASUS Rampage II Extreme

В данном разделе сразу же бросаются в глаза «статические» надписи желтого цвета, которые отображают текущие рабочие частоты процессора и памяти, напряжения и температуру CPU, микросхем чипсета, благодаря чему не надо перемещаться по всем разделам BIOS или перегружать систему, чтобы посмотреть те или иные значения.

Первый пункт в Extreme Tweaker отвечает за возможность разгона процессора до более производительной модели. Например, наш Core i7-920 можно повысить в «звании» до Core i7-940 или Core i7-965. Так как коэффициент умножения у младших моделей процессоров нового поколения заблокирован, то повышение частоты CPU происходит за счет увеличения частоты тактового генератора.

BIOS ASUS Rampage II Extreme

Аналогичная ситуация происходит и при выборе не поддерживаемого процессором режима работы памяти (DDR3-1600/1333), но при этом коэффициент CPU снижается до необходимого значения, при котором его частота будет приблизительно равна номинальной.

BIOS ASUS Rampage II Extreme

Следующий пункт — Ai Overclockers Tuner, знакомый по ранее выпускавшимся материнским платам ASUS, позволяет выбрать возможность настраивать все параметры системы вручную, использовать настройки X.M.P. (Extended Memory Profiles, интеловский «аналог» EPP, но для памяти DDR3) или же описанные выше режимы повышения частоты процессора или памяти.

BIOS ASUS Rampage II Extreme

В CPU Configuration собрана вся информация о процессоре и настройки различных функций и технологий, которые он поддерживает. Параметры Hardware Prefetcher и Adjacent Cashe Line Prefetch рекомендуется не отключать, так как произойдет падение производительности системы. При разгоне процессора параметр Turbo Mode, отвечающий за работу технологии Turbo Boost необходимо будет отключать. Также можно будет отключить CPU TM Function, но при этом придется следить за температурным режимом процессора.

BIOS ASUS Rampage II Extreme

Пункт DRAM Frequency позволяет выбрать режим работы памяти — для Core i7-920 и Core i7-940 это DDR3-800 и DDR3-1066. Для «экстремальной» версии Core i7 этот список значительно расширен, вплоть до DDR3-2133.

BIOS ASUS Rampage II Extreme

Настройки таймингов памяти сосредоточены в разделе DRAM Timing Control. Список внушительный, а с учетом Command Rate (значения 1T, 2T или 3T) — даже больше чем на платах ASUS на базе чипсетов X48/P45.

BIOS ASUS Rampage II Extreme

EPU II Phase Control отвечает за режимы функционирования «энергетического юнита», который управляет подсистемой питания платы.

BIOS ASUS Rampage II Extreme

BIOS платы ASUS Rampage II Extreme позволяет настраивать всевозможные напряжения в широких пределах с определенным безопасным уровнем, и для обхода последнего имеется параметр Extreme OV, благодаря которому на процессор можно подать до опасных 2,5 В.

BIOS ASUS Rampage II Extreme

BIOS ASUS Rampage II Extreme

Такое же напряжение можно подать и на память, но уже без активации Extreme OV. Правда, после перехода порога в 1,65 В появится предупреждение о возможности повреждения процессора при столь высоком напряжении. По технической документации на новые CPU максимально допустимым напряжением для памяти является около 1,85 В, при повышении которых уже идет большая нагрузка на встроенный контроллер памяти.

BIOS ASUS Rampage II Extreme

Достаточно давно известный по материнским платам ASUS параметр Load-Line Calibration, позволяющий избежать просадки напряжения на процессоре при его разгоне нашел применение и здесь. Также появился параметр CPU Differential Amplitude, который должен прибавить стабильности при разгоне процессора. Остальные напряжения, в том числе на северном и южном мостах занесены в следующую таблицу:

Параметр Диапазон изменений
CPU Voltage 0,85000-2,50000 В, с шагом 0,00625 В
CPU PLL Voltage 1,81592-2,50492 В, с шагом 0,01325 В
QPI/DRAM Core Voltage 1,20000-2,50000 В, с шагом 0,00625 В
IOH Voltage 1,11341-2,19991 В, с шагом 0,01325 В
IOH PCIE Voltage 1,51106-2,78306 В, с шагом 0,01325 В
ICH Voltage 1,11341-2,00116 В, с шагом 0,01325 В
ICH PCIE Voltage 1,51106-2,05431 В, с шагом 0,01325 В
DRAM Bus Voltage 1,51106-2,50492 В, с шагом 0,01325 В

Теперь перейдем к следующим не менее интересным разделам. В NorthBridge Chipset Configuration имеется настройка режимов работа второго и третьего разъема PCI-E x16 — это либо «x8+x8», либо «x16+x1».

BIOS ASUS Rampage II Extreme

В разделе LCD Poster and LED Control находятся настройки выносного ЖК-экрана и светодиодной индикации на материнской плате.

BIOS ASUS Rampage II Extreme

Раздел мониторинга разделен на четыре подраздела: напряжение питания, температура компонентов платы, скорость вращения вентиляторов и управление последними.

BIOS ASUS Rampage II Extreme

Мониторинг напряжений достаточно обширный — здесь собраны полностью все настраиваемые значения, плюс напряжения по трем основным линиям, выдаваемые блоком питания.

BIOS ASUS Rampage II Extreme

Мониторинг температур отслеживает показатели процессора, материнской платы и микросхем чипсета. Также здесь можно настроить порог срабатывания защиты при перегреве.

BIOS ASUS Rampage II Extreme

Количество сохраняемых профилей с настройками системы увеличилось до восьми — ранее в платах ASUS была возможность сохранить лишь пару профилей. Кроме того, в Rampage II Extreme теперь можно каждый профиль называть по своему усмотрению, чего так не хватало в старых решениях данного производителя.

BIOS ASUS Rampage II Extreme

Ну и под конец расскажем о возможностях обновления BIOS материнской платы. Итак, можно ипользовать утилиты AFUDOS для DOS или ASUS Update для Windows. Первый вариант предпочтительней и для него не обязательно пользоваться флоппи-дисководом. Достаточно воспользоваться возможностями EZ Flash в BIOS и обычной «флешкой», с предварительно сохраненной версией микрокода.

BIOS ASUS Rampage II Extreme

В случае повреждения или не правильной перепрошивки микрокода можно сделать откат на старую версию благодаря второй микросхеме с BIOS.

Так как использовался инженерный образец Intel Core i7-920, в котором заблокированы некоторые множители (для розничных процессоров все коэффициенты умножения, кроме процессорного на повышение, компания Intel решила разблокировать) нам не были доступны пункты UCLK Frequency и QPI Link Data Rate в разделе Extreme Tweaker, отвечающие за частоту контроллера памяти и L3-кэш, а также за частоту шины QPI. При тестировании и разгоне данные параметры устанавливались автоматически.

Разгон процессоров Core i7

Разгон процессоров нового поколения поначалу может показаться достаточно сложным занятием из-за появления неизвестных ранее параметров, которые необходимо настраивать для повышения частоты CPU. Но платформа Nehalem в плане разгона ничем не отличается от современной платформы AMD, а по сравнению с LGA775 имеет незначительные изменения. В этой статье мы не раз упоминали о некоторых параметрах, критичных при разгоне Intel Core i7 и в данном разделе попытаемся свести все вместе и на примере тестового процессора продемонстрировать возможности новых CPU.

Итак, в первую очередь следует отметить отказ инженеров Intel от системной шины Front Side Bus, которая служила верой и правдой не один десяток лет для связи процессора с чипсетом. Вместо нее теперь используется шина QPI с реальной частотой 2,4 или 3,2 ГГц, в зависимости от процессора, которая формируется за счет умножения коэффициента 18х или 24х на частоту тактового генератора, равную 133 МГц. Она также называется опорной частотой или просто Bclk, за счет которой формируются частоты ядра процессора, контроллера памяти и кэш-памяти третьего уровня (данный блок называется Uncore), а также частота памяти DDR3.

Ранее частота процессора формировалась за счет умножения определенного коэффициента на реальную частоту FSB, и разгон осуществлялся методом поднятия последней, так как множитель на процессорах Intel был заблокирован в сторону повышения (кроме версий Extreme Edition). Для новых CPU в этом плане ничего не изменилось — вместо FSB мы повышаем значение Bclk. При этом, естественно, пропорционально увеличиваются частоты шины QPI, блока Uncore и памяти. Если сравнивать с платформой конкурента, то у K8/K10 изначально предусмотрены низкие коэффициенты умножения основных блоков процессора, памяти и шины, благодаря чему частоту ядер можно повышать независимо от всего остального. С процессорами Core i7 дела обстоят несколько иначе. Минимальный множитель для шины QPI у новых процессоров Intel равен 18х, для контроллера памяти и L3-кэша — 16х, для памяти можно установить 6х (коэффициент «эффективный»), что соответствует 800 МГц. В итоге при увеличении частоты тактового генератора, скажем, до 200 МГц, частота процессора Core i7-920 составит 4 ГГц, шины QPI — 3,6 ГГц (7,2 ГТ/с, в BIOS Setup некоторых материнских плат может отображаться эффективная частота, например 7200 МГц), блока Uncore — 3,2 ГГц, а памяти будет равна 1200 МГц. Можно предположить, что изначально высокие множители станут преградой для достижения максимального разгона процессоров Core i7. Но как показывает практика из появившихся в Сети различных обзоров новой платформы, как раз с этим никаких проблем не наблюдается. Высокочастотная память DDR3 уже давно представлена на рынке, а стабильность остальных узлов системы может быть достигнута за счет повышения напряжения питания. Максимально рекомендуемое напряжение, подаваемое на процессор составляет 1,55 В (номинал 1,2 В), на контроллер памяти, шины QPI и кэш L3 — 1,35 В, для памяти это значение соответствует известным 1,65 В. При необходимости так же можно поднять напряжение CPU PLL (при разгоне Core 2 Quad в значительной степени влияло на результат) с 1,8 до 1,88 В. Конечно, процессору Core i7-965 Extreme Edition в плане разгона повезло куда больше — достаточно повышать коэффициент умножения и напряжение питания самого CPU.

Для информации все частоты и множители процессоров, шины QPI, контроллера памяти и L3-кэша, а также самой памяти занесены в таблицу:

Модель Частота процессора/множитель Частота Uncore/множитель Частота памяти/множитель Частота шины QPI/множитель
Core i7-965 EE 3,2 ГГц / 12-24 и выше 2,66 ГГц / 16-20 и выше 1333 МГц / 6, 8, 10 и выше 3,2 ГГц (6,4 ГТ/с) / 18, 20, 24
Core i7-940 2,93 ГГц / 12-22 2,13 ГГц / 16 и выше 1066 МГц / 6, 8 и выше 2,4 ГГц (4,8 ГТ/с) / 18
Core i7-920 2,66 ГГц / 12-20 2,13 ГГц / 16 и выше 1066 МГц / 6, 8 и выше 2,4 ГГц (4,8 ГТ/с) / 18

Технически, каждый из этих множителей может быть уменьшен до 2х, но где происходит блокировка — на уровне процессора или материнской платы — пока сказать сложно. Возможно, со временем мы точно сможем ответить на этот вопрос, а пока перейдем к остальным нюансам разгона новейших CPU от Intel.

Следующим важным пунктом является технология Turbo Boost, которая активируется при недостаточной загрузке всех ядер и повышает частоту процессора за счет увеличения множителя на один-два пункта. Достигнув при разгоне, например, предельных 4 ГГц система станет крайне нестабильной с Turbo Boost из-за более высокой частоты процессора во время слабой нагрузки. Поэтому данную технологию лучше отключать. Если же уровень разгона не превышает 3,5 ГГц, то можно попытаться оставить Turbo Boost в активном режиме, при этом следить за стабильностью системы при выполнении однопоточных задач.

И последний момент, на который необходимо обратить внимание при повышении частоты процессоров архитектуры Nehalem. Компания Intel ввела механизм защиты Core i7 от «переразгона», который тесно связан с Turbo Boost. Если тепловыделение или проходящий ток через процессор превысит 130 Вт или 100 А, будет задействован режим троттлинга, при котором начнет снижаться коэффициент умножения CPU. Естественно, данная «забота» будет мешать при разгоне, и для ее обхода достаточно отключить функцию CPU TM Function в решениях от ASUS или установить порог TDP и силы тока в материнской плате от Intel (для процессоров Core i7-965 EE). После этого необходимо тщательно следить за температурой процессора, так как нынешний степпинг C0 ядра Bloomfield обладает горячим нравом при повышении частоты и напряжения. Кроме того, для охлаждения Core i7, работающего в нештатных режимах, необходимо использовать высокопроизводительный кулер, иначе предел разгона будет ниже ожидаемого уровня, так как максимальная температура, при которой включается защита CPU, равна 100 °C.

  • Материнская плата: ASUS Rampage II Extreme (Intel X58);
  • Кулер: Noctua NH-U12P с креплением LGA1366 Mounting-Kit;
  • Оперативная память: Team Xtreem Dark TXDD2048M1866HC8DC (2×1024 МБ, DDR3-1866);
  • Видеокарта: Zotac GeForce 9600GT AMP!;
  • Жёсткий диск: Samsung HD252HJ (250 ГБ, SATA2);
  • Блок питания: Silver Power SP-S850 (850 Вт).

Noctua LGA1366 Mounting-Kit

В качестве вентиляторов применялись Akasa AK-183-L2B и Foxconn PV122512L с частотой вращения около 1700 об/мин, так как пара Noctua NF-P12 (1300 об/мин) были не в состоянии справиться с охлаждением радиатора при высоких частотах Core i7.

Чтобы при разгоне не было никаких препятствий технология Turbo Boost отключалась, напряжение питания на процессоре устанавливалось в значение 1,4 В, CPU PLL — 1,88 В, на контроллере памяти и шины QPI (QPI/DRAM Core Voltage) выставлялось на уровне 1,35 В. На модулях памяти напряжение питания равнялось 1,65 В, при этом тайминги составляли 7-7-7-21, а коэффициент — 6х. Тестом на стабильность использовалась утилита OCCT v.2.01 с часовым прогоном.

С такими настройками удалось достичь всего 3700 МГц, и дальнейший рост уперся в банальный перегрев — даже при таком уровне разгона температура процессора составляла 96 °C. И это на открытом стенде!

Разгон Core i7-920

Частота тактового генератора равнялась 185 МГц, Uncore и памяти — 2960 и 1110 МГц соответственно. Шина QPI немногим отличалась от стандартной частоты у процессора Core i7-965 EE.

Разгон Core i7-920

Теперь становится ясно, почему пресс-киты для тестирования выдавались с кулерами Thermalright Ultra 120 Extreme — процессоры Core i7 попросту не смогли бы пройти тест на разгон. Потенциал ядра Bloomfield в плане тепловыделения просто поражает. Уже начинаем представлять, как толпы разъяренных фанатов Core i7 сметают с полок системы водяного охлаждения по 200 долларов за штуку…

А как же 4 ГГц, которые так легко получают на воздушном охлаждении? Для нашего экземпляра Core i7-920 данная частота стала возможной после отключения технологии Hyper-Threading и повышения напряжения питания до уровня 1,42 В.

Разгон Core i7-920

Максимальная температура в таком режиме составила всего лишь 89 градусов Цельсия, что значительно лучше, чем предыдущий результат. Но даже почти 90 °C можно назвать слишком высокой температурой. Возможно, с выходом нового степпинга ядра данная проблема будет исправлена, как это обычно происходит после обкатки технологии производства процессорных кристаллов.

Частота Bclk равнялась «магическим» 200 МГц, которой ранее не могли достичь счастливые обозреватели, получившие задолго до официального анонса архитектуры Nehalem экземпляры Core i7 и выражавшие после тестов свое недовольство в новостной ленте различных сайтов. Но, как оказалось, новые процессоры без проблем покоряют данную частоту. Главное знать, где и что настраивать для достижения желаемого результата.

С повышением частоты тактового генератора до 200 МГц значительно увеличились частоты шины QPI и Uncore — до 3600 и 3200 МГц. Память при этом функционировала на 1200 МГц.

Разгон Core i7-920

Тестовые конфигурации

Что же, пора заканчивать затянувшуюся историю о новой платформе Nehalem. А для этого как раз подойдут сравнительное тестирование системы на базе Core i7 с представителями предыдущего поколения. В качестве процессоров для платформы LGA775 использовались Core 2 Duo E8200 и Core 2 Quad Q9400, работающие на частоте 2,66 ГГц. Первый из них является самым производительным двухъядерным решением на такой частоте, а второй на момент проведения тестирования оказался единственным доступным вариантом, обладающим четырьмя ядрами. Нет смысла говорить, что локальный рынок фактически «заморожен», поставки сократились, а продажи резко упали. И на этой ниве собрать высокопроизводительный тестовый стенд становится проблематично. Но как показало наше тестирование, даже Core 2 Quad Q9400 в некоторых задачах может спокойно конкурировать с Core i7, работающим на одинаковой с ним частоте.

Характеристики сравниваемых процессоров занесены в представленную ниже таблицу.

Процессор Intel Core i7-920 Intel Core 2 Quad Q9400 Intel Core 2 Duo E8200
Архитектура Nehalem Penryn Penryn
Ядро Bloomfield Yorkfield Wolfdale
Разъем LGA1366 LGA775 LGA775
Техпроцесс 45 нм 45 нм 45 нм
Степпинг C0 R0 C0
Количество транзисторов 731 млн. 2 х 410 млн. 410 млн
Площадь ядра 263 кв.мм 2 х 107 кв.мм 107 кв.мм
Число ядер 4 (8 потоков) 4 2
Номинальная частота 2,66 ГГц 2,66 ГГц 2,66 ГГц
Объем L1 кэша 4 x (32+32) КБ 4 x (32+32) КБ 2 x (32+32) КБ
Объем L2 кэша 4 x 256 КБ 2 x 3 МБ 6 МБ
Объем L3 кэша 8 МБ
Множитель 20х, заблокирован на повышение 8х, заблокирован на повышение 8х, заблокирован на повышение
Hyper-Threading +
Поддерживаемый тип памяти DDR3 800/1066
Шина QPI (4,8 ГТ/с) FSB (1333 МГц) FSB (1333 МГц)
Номинальное напряжение 1,20 В 1,20 В 1,20 В
TDP 130 Вт 95 Вт 65 Вт
Средняя стоимость $328 $294 $181

  • Процессор: Intel Core i7-920 (2,66 ГГц, 8 МБ кэш L3);
  • Материнская плата: ASUS Rampage II Extreme (Intel X58);
  • Кулер: Noctua NH-U12P с креплением LGA1366 Mounting-Kit;
  • Оперативная память: Aeneon AEH860UD00-10F (3×2048 МБ, DDR3-1066, 6-6-6-18);
  • Видеокарта: Leadtek WinFast GTX 280;
  • Жёсткий диск: Samsung HD252HJ (250 ГБ, SATA2);
  • Блок питания: Seasonic SS-600HM (600 Вт).

Платформа LGA1366

  1. «2,66/8/3/T» — стандартная частота процессора (2666 МГц), технология Hyper-Threading активирована, трехканальный режим, Turbo Boost включен;
  2. «2,66/4/3/T» — стандартная частота процессора (2666 МГц), технология Hyper-Threading деактивирована, трехканальный режим, Turbo Boost включен;
  3. «2,66/4/3/noT» — стандартная частота процессора (2666 МГц), технология Hyper-Threading деактивирована, трехканальный режим, Turbo Boost отключен;
  4. «2,66/4/2/noT» — стандартная частота процессора (2666 МГц), технология Hyper-Threading деактивирована, двухканальный режим, Turbo Boost отключен;
  5. «3,54/8/3/noT» — разгон процессора до 3540 МГц, технология Hyper-Threading активирована, трехканальный режим, Turbo Boost отключен;
  6. «3,54/4/3/noT» — разгон процессора до 3540 МГц, технология Hyper-Threading деактивирована, трехканальный режим, Turbo Boost отключен;
  7. «3,54/4/2/noT» — разгон процессора до 3540 МГц, технология Hyper-Threading деактивирована, двухканальный режим, Turbo Boost отключен.
  • Процессор №1: Core 2 Quad Q9400 (2,66 ГГц, 6 МБ кэш L2);
  • Процессор №2: Core 2 Duo E8200 (2,66 ГГц, 6 МБ кэш L2);
  • Материнская плата: ASUS Rampage Formula (Intel X48);
  • Кулер: Noctua NH-U12P с креплением LGA1366 Mounting-Kit;
  • Оперативная память: Team Xtreem Dark TXDD4096M1066HC5-D (2×2048 МБ, DDR2-1066, 5-5-5-15);
  • Видеокарта: Leadtek WinFast GTX 280;
  • Жёсткий диск: Samsung HD252HJ (250 ГБ, SATA2);
  • Блок питания: Seasonic SS-600HM (600 Вт).
  • X58: Intel Chipset Software Installation Utility 9.1.0.1007;
  • X58: SoundMAX Audio Driver v6.10.1.6480;
  • X48: Intel Chipset Software Installation Utility 8.3.0.1013;
  • X48: SoundMAX Audio Driver V6.10.01.6280;
  • Общие: ForceWare 180.48.

Результаты тестирования в прикладном ПО

Синтетика

Начнем, пожалуй, с синтетического пакета PCMark’05, который пользовался особой популярностью во времена противостояния Pentium 4 и Athlon 64, хотя и не отражал реальной картины производительности обеих платформ. Но рассматриваемые в материале системы полностью на базе процессоров Intel, так что, ни о каком «читерстве» и речи быть не может.

Результаты тестирования Core i7

Результаты тестирования Core i7

Итак, общий балл и результаты по процессорному тесту оказались предсказуемы, так как PCMark’05 чувствителен к многоядерным решениям и высокой частоте. Верхние строчки рейтинга занимает разогнанный Core i7-920 с различными режимами работы, следом идет Core 2 Quad Q9400, работающий на частоте 3,54 ГГц. Разогнанный Core 2 Duo E8200 в процессорном тесте показал примерно такой же результат, как и Core i7-920 без разгона и с активированной технологией Turbo Boost. Но уже в номинальном режиме двухъядерный CPU, естественно, показывает самый низкий результат.

Результаты тестирования Core i7

В тесте памяти распределение по результатам закономерное, учитывая встроенный контроллер памяти у Bloomfield, и только Core 2 Duo E8200 показывает более высокий балл, чем Core 2 Quad Q9400.

Подсистема памяти

Результаты тестирования Core i7

Результаты тестирования Core i7

Результаты тестирования Core i7

По той же причине Core i7 демонстрируют высокую производительность подсистемы памяти в Lavalys Everest, которая при разгоне процессора еще больше повышается, особенно при записи. Судя по всему, более высокая частота контроллера способствует росту этого показателя. Переход к двухканальному режиму не так существенно отражается на ПСП, как могло бы показаться. С возможностями Core i7 при записи смогли потягаться Core 2 Duo и Core 2 Quad лишь после повышения частоты, и то, за счет именно FSB, работающей на эффективных 1772 МГц.

Результаты тестирования Core i7

Латентность памяти уменьшилась почти в два раза по сравнению с процессорами прошлого поколения, и это несмотря на использование DDR3. Переход к двухканальному режиму даже предпочтительнее в этом плане и можно сразу предположить о более высоком быстродействии в некоторых приложениях систем с двумя модулями памяти.

Архивирование

Результаты тестирования Core i7

Результаты тестирования Core i7

Оптимизированный под многопоточность архиватор 7-Zip (использовался словарь в 32 МБ) склонен к большему количеству ядер, чем к высокой частоте. Использование HT позволяет увеличить производительность при архивировании до более высокого уровня по сравнению с разогнанным процессором с этой отключенной технологией. При компрессии четырехъядерный Core 2 Quad Q9400 смотрится достойно на фоне Core i7, но только с повышением частоты, хотя уже при декомпрессии способен на равных потягаться с новым CPU.

Результаты тестирования Core i7

Встроенный в архиватор WinRAR определяет быстродействие подсистемы «процессор-память» и всегда был неплохим мерилом производительности этой связки, но c Core i7-920 ведет себя странным образом: при частоте 3,54 ГГц с двухканальным режимом результат такой же, как и при «турбированных» 2,66 ГГц и задействованных трех каналах. Естественно, незначительное падение пропускной способности памяти при двух каналах не может так сильно отразиться на результатах. Возможно, с выходом новой версии данная проблема будет исправлена.

Рендеринг

Результаты тестирования Core i7

Результаты тестирования Core i7

В CINEBENCH 10 при рендеринге сцены с использованием одного CPU все режимы работы процессоров выстроились аккуратной лесенкой: Core 2 в номинале, Core i7 без Turbo Boost и с ним же, разогнанные Core 2 и Core i7. Количество задействованных каналов памяти в системе с Bloomfield особой роли не играет. Переход к мультиядерному тесту немного меняет картину и на первое место становится именно количество ядер в процессоре, а уже потом — частота.

Результаты тестирования Core i7

А вот в тесте видеокарты все кардинально меняется и система на новой платформе набирает в полтора раза меньше баллов, чем на базе Core 2 Duo и Core 2 Quad. Что это, ахиллесова пята архитектуры Nehalem или попросту проблемы микрокода BIOS платы или драйверов? Будем надеяться на последнее.

Результаты тестирования Core i7

Результаты тестирования Core i7

Результаты в POV версии 3.7 beta 29 аналогичны CINIBENCH за исключением того, что при активации Hyper-Threading происходит падение производительности на Core i7 и его место на графике занимает четырехъядерный процессор архитектуры Penryn. Подобная проблема наблюдалась еще с Pentium 4 HT, который показывал более низкое быстродействие, когда одновременно обрабатываемые потоки были чувствительны к размеру кэшей. В случае активирования Hyper-Threading, объем кэш-памяти каждого физического ядра делится пополам и при слабой оптимизации кода программ под эту технологию как раз и будет наблюдаться падение производительности.

Работа с видео

Результаты тестирования Core i7

Для кодирования видео все средства хороши: и количество ядер и их частота. Программой Virtual Dub кодировался ролик MPG2 объемом 0,97 ГБ при помощи кодека DivX 6.8.5, который поддерживает несколько ядер. Использование HT положительным образом сказалось на производительности, хотя и не значительно. Процессоры Core 2 лишь с разгоном могут конкурировать с новинкой от Intel.

Результаты тестирования Core i7

Еще один тест по кодированию видео — x264 HD Benchmark, благосклонно отнесся к процессору новой архитектуры и безразлично к технологии Hyper-Threading. На графике представлен средний FPS по первому проходу версии 0.58.819M.

Кроме того, были сняты показания температуры во время прохождения всех четырех прогонов этого теста. Напоминаем, что при разгоне напряжение питания на процессоре Core i7-920 было 1,4 В, на остальных — 1,375 В.

Результаты тестирования Core i7

Как ни странно, самым холодным оказался Core 2 Quad Q9400. Даже при увеличении частоты его температура не превышала 56 градусов Цельсия. Весьма горячий степпинг Core 2 Duo E8200 позволил ему нагреться при разгоне до 64 °C. Такая же температура у Core i7-920, работающего на номинальной частоте с отключенным Turbo Boost. Активирование HT значительно повышает температуру CPU, особенно при поднятии частоты. Как уже отмечалось выше, нынешняя ревизия Bloomfield отличается высоким тепловыделением и при повышении частоты и напряжения этот показатель сильно увеличивается. Поэтому для работы в нештатных режимах придется позаботиться о производительной системе охлаждения.

Математические расчеты

Результаты тестирования Core i7

Fritz Chess Benchmark рассчитывает количество ходов за определенное время и, как и в случае с 7-Zip, решающим является количество логических/физических ядер и их частота.

Результаты тестирования Core i7

Результаты тестирования Core i7

Бенчмарк wPrime хорошо оптимизирован под многопоточность и в большей степени реагирует именно на количество ядер. Идеальная картина низкой производительности E8200 относительно своих четырехъядерных оппонентов наблюдается и здесь. И если так было бы во всех приложениях, то можно было бы заявить о приходе эры «квадов» в декстопные системы. Но, увы…

Результаты тестирования Core i7

Результаты тестирования в игровых приложениях

Ну и, конечно же, игры. Использовались известные синтетические тестовые пакеты от Futuremark Corp., а также небольшое количество игр, при тестировании в которых снималось несколько результатов. Один был при разрешении 1024х768 и среднем качестве, а два — при 1280х1024, 1600х1200 и высоком качестве.

Синтетика

Результаты тестирования Core i7

В 3DMark 2001SE (который через пару лет отметит свой первый десяток лет) быстродействие Core i7 и Core 2 Duo практически одинаковое. Core 2 Quad отстает от них за счет меньшего кэша, и будь на его месте Q9450 с 12 МБ кэш-памяти второго уровня, возможно, расстановка сил немного изменилась бы. Использование двух каналов памяти благоприятно сказывается на производительности новой платформы.

Результаты тестирования Core i7

Результаты тестирования Core i7

Пакет 3DMark’06 в должной мере поддерживает многопоточность, что отразилось на результатах Core i7-920 с Hyper-Threading. Естественно, четырехъядерный процессор на базе архитектуры Penryn никаких шансов не оставил своему двухъядерному собрату, несмотря на два раза меньший L2-кэш, относящийся к каждой паре ядер.

Результаты тестирования Core i7

Результаты тестирования Core i7

3DMark Vantage еще больше реагирует на количество ядер. При номинальной частоте Core i7 все также опережает своих оппонентов за счет архитектурных особенностей. Следующий график не такой показательный, как предыдущие, но дает почву для дальнейших размышлений.

Результаты тестирования Core i7

Итак, разница в GPU-тесте между режимами работы процессоров составляет доли процентов. Если же присмотреться к графику, то система с Bloomfield в большинстве случаев занимает последние строчки. К чему бы это?

Игры

Результаты тестирования Core i7

Известный фейк о поддержке многопоточности в игре F.E.A.R. перекочевал и на ее продолжение Extraction Point, что делает игру сугубо измерителем потенциала процессора, как одноядерного решения. И если с Core i7 и так все ясно, то Core 2 Duo E8200 благодаря своему 6-мегабайтному кэшу второго уровня становится производительней четырехъядерного процессора.

Результаты тестирования Core i7

Аппетиты движков Unreal Tournament становятся все умереннее и умереннее. Добавим современные тенденции и получим рост производительности 50% при переходе с двухъядерного процессора на платформу Nehalem. А если еще и разогнать… Core i7-920, то более 200 кадров в секунду обеспечены. Хотя, Core 2 Quad Q9400 тоже не промах при разгоне.

Результаты тестирования Core i7

Результаты тестирования Core i7

При использовании графики с максимальным качеством рост производительности уже не такой стремительный, а с повышением разрешения между разогнанным и не разогнанным Core i7 разница начинает нивелироваться. И, конечно же, обладателям мониторов с большей диагональю станет все равно, какой именно процессор у них установлен.

Результаты тестирования Core i7

Вышедший осенью прошлого года шутер Far Cry 2 уже в полной мере поддерживает четырехъядерные процессоры, что видно по результатам.

Результаты тестирования Core i7

Результаты тестирования Core i7

Только вот незадача — опять непонятное падение производительности на системе с Bloomfield. Даже разогнанный двухъядерный E8200 показывает больший результат, чем Core i7-920, работающий на частоте 3,54 ГГц. Причем, минимальный FPS на последнем ниже, чем у оппонентов.

Результаты тестирования Core i7

Математические расчеты берут свое и Core i7 в CPU тесте игры Crysis на 20-50% производительней процессоров предыдущего поколения. Лишь при разгоне Core 2 Quad Q9400 может конкурировать с новичком.

Результаты тестирования Core i7

Результаты тестирования Core i7

Ой, а мы это уже где-то видели: опять падение производительности на Core i7 при переходе к высоким разрешениям и качественной графике. Может, архитектура Nehalem вовсе и не игровая? Или это все та же проблема «BIOS-драйвера»? Пока сказать сложно, что именно является проблемой. Возможно, это как-то связано только с нашей системой и с другими в этом плане все в порядке. А для подтверждения этого факта необходимо провести исследование на платах других производителей, что и будет сделано в следующий раз.

Результаты тестирования Core i7

Результаты тестирования Core i7

Результаты тестирования Core i7

В X3: Terran Conflict есть зачатки поддержки многоядерности и распределение мест по результатом как и положено, от Core 2 Duo до Core i7.

Результаты тестирования Core i7

Процессорозависимая игра World in Conflict отлично отреагировала на новую архитектуру, что дало 50% прибавку к производительности при переходе со старой платформы на Nehalem. Использование Hyper-Threading немного сказалось на производительности, чего не скажешь о двухканальном доступе к памяти: в отличие от некоторых программ, играм достаточно пропускной способности двухканального режима.

Результаты тестирования Core i7

Результаты тестирования Core i7

С повышением качества и разрешения расстановка сил нисколько не изменилась, только Core 2 Quad Q9400 при разгоне «затесался» среди режимов работы Core i7-920 в номинале.

Выводы

В свое время выход архитектуры AMD64 и процессоров на ее базе назвали «Бархатной революцией». Об архитектуре Nehalem у нас сложилось схожее впечатление: если разработку Core 2 можно было действительно охарактеризовать как революционную, то Core i7 в ближайшем рассмотрении оказался «бархатным». Пойдя по пути своего конкурента, компания Intel отказалась от использования шины FSB, интегрировала в кристалл процессора кэш-память третьего уровня и контроллер памяти, причем, трехканальный. Давно забытая технология Hyper-Threading снова нашла место под солнцем, и для ее поддержки процессоры «научились» себя разгонять благодаря функции Turbo Boost. Теперь нет необходимости повышать частоту системной шины, пропускная способность памяти стала избыточной, а для дальнейшего развития платформы осталось лишь наращивать частоту самого процессора. Проектировать наборы системной логики стало легче, так как часть северного моста перекочевала в CPU, а учитывая планы Intel по выпуску процессора с графическим ядром, интегрированные чипсеты также лишатся своей основной функции, если и вовсе не исчезнут.

С другой стороны, мы имеем дело с переходом на совершенно другую платформу, которая требует материнские платы с разъемом LGA1366 на базе чипсета Intel X58 Express, стоимость которых выше решений на Intel X48. Добавим сюда необходимость использования дорогой памяти стандарта DDR3 (правда, для большинства задач достаточно использования двухканального режима), цену на сами процессоры, и получим просто нереальные цифры. Здесь как раз можно провести параллели с выходом платформы AMD64, которая хоть и поддерживала распространенные тогда память DDR и видеокарты AGP, доступной многим стала спустя год своего присутствия на рынке.

Но, несмотря на высокую стоимость старших моделей Core i7, самый доступный процессор на базе архитектуры Nehalem вполне реально может стать сердцем системы энтузиаста или даже рабочей станции. И для последней есть все основания: Core i7-920 силен в математических расчетах, архивировании, кодировании видео и рендеринге. За счет архитектурных особенностей и технологий Hyper-Threading и Turbo Boost новый процессор производительней четырехъядерных Core 2, работающих на равной или более высокой частоте.

Для оверклокеров платформа Nehalem станет очередным инструментом для самовыражения и покорения рейтингов ORB и hwbot.org. Особенности разгона Core i7 дают повод для новых исследований в этой области, а высокое тепловыделение процессоров при повышении частоты и напряжения станет «катализатором» для поиска новых и эффективных систем охлаждения. Введенная компанией Intel защита от переразгона в большинстве случаев обходится средствами материнских плат, благодаря чему частоты порядка 4 ГГц можно достичь без особых усилий.

А как же тогда геймеры? – спросите вы. А никак. Игры, которые сильно зависят от производительности процессора и оптимизированные под большое количество ядер, действительно будут чувствовать себя куда лучше на платформе Nehalem. Это в большей степени стратегии, симуляторы, шутеры с графикой, не особо нагружающей видеокарты. Если же движок «стрелялки» может похвастаться поддержкой модных технологий и эффектов, то разница от используемой платформы сводится к нулю. И в таком случае нет необходимости разбираться в математике, чтобы понять о целесообразности перехода на новую платформу.

Но как бы там ни было, выход Nehalem стал большим шагом в будущее. Наконец-то такой консервативный разработчик как Intel избавился от архаизмов в виде системной шины и контроллера памяти в чипсете. Сам же узаконил разгон в своих процессорах, хоть и незначительный. И, подчеркиваем, впервые получил право для чипсета поддерживать технологию NVIDIA SLI, которая была прерогативой сугубо калифорнийской компании. Теперь материнские платы на базе X58 смогут поддерживать как CrossFire, так и SLI, а это уже дает широкий выбор для постройки мультичиповых конфигураций.

Заключение

Системная шина является своеобразной кровеносной «артерией» любого компьютера, обеспечивающей передачу данных от «сердца» материнской платы – процессора к остальным микросхемам материнской платы и, прежде всего, к северному мосту, управляющем работой оперативной памяти. В настоящее время в различных архитектурах материнских плат можно встретить как традиционную шину FSB, так и имеющие сложные топологии высокоэффективные шины Hypertransport и QPI. Характеристики, производительность и архитектура системной шины являются важными факторами, которые определяют потенциальные возможности компьютера.

Ссылка на основную публикацию