Функция PFC

PFC — это Power Factor Correction, что переводится с англ. как "Коррекция фактора мощности", встречается также название "Компенсация реактивной мощности".
Применительно к импульсным блокам питания этот термин означает наличие в блоке питания соответствующего набора схемотехнических элементов, который также принято называть "PFC". Эти устройства предназначены для снижения потребляемой блоком питания реактивной мощности. Источники питания без PFC создают мощные импульсные помехи по электросети для параллельно включенных электроприборов.
Для количественной оценки внесенных искажений и помех существует коэффициент мощности (КМ или Power Factor). Собственно фактором (или коэффициентом мощности) называется отношение активной мощности (мощности, потребляемой блоком питания безвозвратно) к полной, т.е. к векторной сумме активной и реактивной мощностей. По сути коэффициент мощности (не путать с КПД!) есть отношение полезной и полученной мощностей, и чем он ближе к единице – тем лучше.

PFC

PFC

Разновидности PFC

PFC бывает двух разновидностей – пассивный и активный.
Наиболее простым и потому наиболее распространенным является так называемый пассивный PFC. Пассивные PFC делают на реактивном элементе — дросселе. К сожалению, для получения приемлемой эффективности его размеры получаются соизмеримые с размерами трансформаторного варианта построения этого блока питания, что экономически не выгодно. Большие геометрические размеры дросселя получаются потому, что он должен работать на частоте 50Hz (точнее 100Hz из-за удвоения частоты после выпрямления) и он никак не может быть меньше соответствующего трансформатора на такую же мощность. Довольно часто в БП под вывеской "пассивный PFC" скрывается дроссель весьма малых размеров. Точнее сказать, там не может быть дросселя достаточных размеров из-за весьма ограниченного места в корпусе данного БП. Подобный декоративный PFC может испортить динамические характеристики БП или стать причиной неустойчивой работы.

Активный PFC представляет собой еще один импульсный источник питания, причем повышающий напряжение.
Помимо того, что активный PFC обеспечивает близкий к идеальному коэффициент мощности, так еще, в отличие от пассивного, он улучшает работу блока питания — он дополнительно стабилизирует входное напряжение основного стабилизатора блока – блок становится заметно менее чувствительным к пониженному сетевому напряжению, также при использовании активного PFC достаточно легко разрабатываются блоки с универсальным питанием 110. 230В, не требующие ручного переключения напряжения сети.
Также использование активного PFC улучшает реакцию блока питания во время кратковременных (доли секунды) провалов сетевого напряжения – в такие моменты блок работает за счет энергии конденсаторов высоковольтного выпрямителя, эффективность использования которых увеличивается более чем в два раза. Ещё одним преимуществом использования активного PFC является более низкий уровень высокочастотных помех на выходных линиях, т.е. такие БП рекомендуются для использования в ПК с периферией, предназначенной для работы с аналоговым аудио/видео материалом.

Международные организации и PFC

Международная электротехническая комиссия (МЭК) или IEC (International Electrotechnical Commission) и международная организация по стандартизации или ISO (International Organization for Standardization) устанавливают ограничения на содержание и уровни гармоник во входном токе вторичных источников электропитания. Использование электроприборов, не удовлетворяющих стандартам этих организаций, запрещено во многих странах, поэтому разработчики серьезной аппаратуры обязательно должны об этом помнить.

PFC в импульсном источнике питания

PFC (аббревиатура от Power Factor Correction) — переводится как «Коррекция фактора мощности», встречается также название «компенсация реактивной мощности».

Собственно фактором или коэффициентом мощности называется отношение активной мощности (мощности, потребляемой блоком питания безвозвратно) к полной, т.е. к векторной сумме активной и реактивной мощностей. По сути коэффициент мощности (не путать с КПД!) есть отношение полезной и полученной мощностей, и чем он ближе к единице – тем лучше.

PFC бывает двух разновидностей – пассивный и активный.
При работе импульсный блок питания без каких-либо дополнительных PFC потребляет мощность от сети питания короткими импульсами, приблизительно совпадающими с пиками синусоиды сетевого напряжения.

Наиболее простым и потому наиболее распространенным является так называемый пассивный PFC, представляющий собой обычный дроссель сравнительно большой индуктивности, включенный в сеть последовательно с блоком питания.

Пассивный PFC несколько сглаживает импульсы тока, растягивая их во времени – однако для серьезного влияния на коэффициент мощности необходим дроссель большой индуктивности, габариты которого не позволяют установить его внутри блока питания (компьютерного или в телеке- разницы нет). Типичный коэффициент мощности БП с пассивным PFC cоставляет всего лишь около 0,75.

Активный PFC представляет собой еще один импульсный источник питания, причем повышающий напряжение.
Очень часто его еще называют «подкачкой» или «прекондеем»
Как видно, форма тока, потребляемого блоком питания с активным PFC, очень мало отличается от потребления обычной резистивной нагрузки – результирующий коэффициент мощности такого блока может достигать 0,95. 0,98 при работе с полной нагрузкой.

Правда, по мере снижения нагрузки коэффициент мощности уменьшается, в минимуме опускаясь примерно до 0,7. 0,75 – то есть до уровня блоков с пассивным PFC. Впрочем, надо заметить, что пиковые значения тока потребления у блоков с активным PFC все равно даже на малой мощности оказываются заметно меньше, чем у всех прочих блоков.

Помимо того, что активный PFC обеспечивает близкий к идеальному коэффициент мощности, так еще, в отличие от пассивного, он улучшает работу блока питания — он дополнительно стабилизирует входное напряжение основного стабилизатора блока – блок становится заметно менее чувствительным к пониженному сетевому напряжению, также при использовании активного PFC достаточно легко разрабатываются блоки с универсальным питанием 110. 230В, не требующие ручного переключения напряжения сети.

Такие БП имеют специфическую особенность – их эксплуатация совместно с дешёвыми ИБП, выдающими ступенчатый сигнал при работе от батарей может приводить к сбоям в работе компьютера, поэтому производители рекомендуют использовать в таких случаях ИБП класса Smart , всегда подающие на выход синусоидальный сигнал.

Также использование активного PFC улучшает реакцию блока питания во время кратковременных (доли секунды) провалов сетевого напряжения – в такие моменты блок работает за счет энергии конденсаторов высоковольтного выпрямителя, эффективность использования которых увеличивается более чем в два раза. Ещё одним преимуществом использования активного PFC является более низкий уровень высокочастотных помех на выходных линиях, т.е. такие БП рекомендуются для использования в ПК с периферией, предназначенной для работы с аналоговым аудио/видео материалом.

А теперь немного теории

Обычная, классическая, схема выпрямления переменного напряжения сети 220V состоит из диодного моста и сглаживающего конденсатора. Проблема в том, что ток заряда конденсатора носит импульсный характер (длительность порядка 3mS) и, как следствие этого, очень большим током.

Например, для БП с нагрузкой в 200W средний ток из сети 220V будет 1A, а импульсный — в 4 раза больше. Если таких БП много и (или) они мощнее? . тогда токи будут просто сумасшедшими — не выдержит проводка, розетки, да и платить придется больше за электричество, ведь качество тока потребления весьма сильно учитывается.

Например, на больших заводах имеются специальные конденсаторные установки для компенсации «косинуса». В современной компьютерной технике столкнулись с теми же проблемами, но ставить многоэтажные конструкции никто не будет, и пошли другим путем — в блоках питания ставят специальный элемент по уменьшению «импульсности» потребляемого тока — PFC.

Разные типы разделены цветами:

  • красный — обычный БП без PFC,
  • желтый — увы, «обычный БП с пассивным PFC»,
  • зеленый — БП с пассивным PFC достаточной индуктивности.

На модели показаны процессы при включении БП и кратковременном провале через 250mS. Большой выброс напряжения при наличии пассивного PFC получается потому, что в дросселе накапливается слишком большая энергия при заряде сглаживающего конденсатора. Для борьбы с этим эффектом производят постепенное включение БП — вначале последовательно с дросселем подключается резистор для ограничения стартового тока, потом он закорачивается.

Для БП без PFC или с декоративным пассивным PFC эту роль выполняет специальный терморезистор с положительным сопротивлением, т.е. его сопротивление сильно возрастает при нагревании. При большом токе такой элемент очень быстро нагревается и величина тока уменьшается, в дальнейшем он охлаждается из-за уменьшения тока и никакого влияния на схему не оказывает. Т.о., терморезистор выполняет свои ограничивающие функции только при очень больших, стартовых токах.

Для пассивных PFC импульс тока при включении не так велик и терморезистор зачастую не выполняет свою ограничивающую функцию. В нормальных, больших пассивных PFC кроме терморезистора ставится еще специальная схема, а в «традиционных», декоративных этого нет.

И по самим графикам. Декоративный пассивный PFC дает всплеск напряжения, что может привести к пробою силовой схемы БП, усредненное напряжение несколько меньше случая без_PFC и при кратковременном пропадании питания напряжение падает на бОльшую величину, чем без_PFC. На лицо явное ухудшение динамических свойств. Нормальный пассивный PFC также имеет свои особенности. Если не учитывать начального всплеска, который в обязательном порядке должен быть компенсирован последовательностью включения, то можно сказать следующее:

— Выходное напряжение стало меньше. Это правильно, ведь оно равно не пиковому входному, как для первых двух типов БП, а «действующему». Отличие пикового от действующего равно корню из двух.
Пульсации выходного напряжения значительно меньше, ведь часть сглаживающих функций переходит на дроссель.
— Провал напряжения при кратковременном пропадании напряжения также меньше по той же причине.
— После провала следует всплеск. Это очень существенный недостаток и это основная причина, почему пассивные PFC не распространены. Этот всплеск происходит потому же, почему он происходит при включении, но для случая начального включения специальная схема может что-то откорректировать, то в работе это сделать много труднее.
— При кратковременном пропадании входного напряжения выходное меняется не так резко, как в других вариантах БП. Это очень ценно, т.к. медленное изменение напряжения схема управления БП отрабатывает весьма успешно и никаких помех на выходе БП не будет.

Читайте также:  Ноутбук стал подвисать что делать

Для других вариантов БП при подобных провалах на выходах БП обязательно пойдет помеха, что может сказаться на надежности функционирования. Как часты кратковременные пропадания напряжения? По статистике, 90% всех нестандартных ситуаций с сетью 220V приходится как раз на такой случай. Основной источник возникновения, это переключения в энергосистеме и подключение мощных потребителей.

На рисунке показана эффективность PFC по уменьшению импульсов тока:

Для БП без PFC сила тока достигает 7.5A, пассивный PFC уменьшает ее в 1.5 раза, а нормальный PFC уменьшает ток значительно больше.

Блоки Питания с активными PFC. APFC активный корректор коэффициента мощности

Приветствую. Блоки питания, это та комплектующая которая отвечает за стабильность и долговечность ПК. В нулевых блоки питания покупались "на сдачу", из-за нетребовательного "железа". В 2021 году такая схема не работает. Приобретая дешёвые БП китайских производителей, пользователь рискует, лишится ПК. Известны случаи когда такие блоки "взрывались", горели и умирая забирали для компании материнские платы. Но не только китайские производители делают недолговечную и опасную продукцию, так, к примеру бренд одной фирмы, прославился в интернете моделью из 4-х букв(последняя буква "С(S-аннгл.)"). Названия говорить не стану, что бы не было претензий со стороны представителей фирмы. Так вот эти модели БП, натуральным образом взрываются. Впрочем, это происходит только на ранних моделях, без варистора. Установленные в этих блоках конденсаторы хилые и не выдерживают возрастающих пульсаций. Далее хлопок и при удачном раскладе, поездка за новым БП в магазин. Не единственным, но "одним из" показателей надежности, считается: "активный PFC".

Эта характеристика прописывается в описании. Теперь, "каплю" занудной теории которую постараюсь сократить: мощность делится на "реактивную" где сила тока прыгает выше, создавая ёмкостную нагруженность, то ниже (индуктивную) и "активную"(полезная для работы компьютерных комплектующих). Прошу прощения если допускаю неточности в формулировках, но электротехника осталась на уровне 10 класса. Так что перейду сразу к тому, что в блоке питания где "мощными" конденсаторами" усеяна" половина(а то и больше) платы, этой реактивной мощности много. Что уменьшает срок службы конденсаторов. Но технологии развиваются, и каждая фирма борется за качество собственными способами. Так к примеру, для противодействия реактивным мощностям устанавливают: "корректор мощности(PFC)". Расшифровка английской аббревиатуры: "Power Factor Correction". Уже писал и повторюсь, что наличие корректора это плюс, но не рекомендую, определятся с выбором опираясь только на его наличие. В статьях, где привожу пример сборок, стараюсь выбирать блоки с сертификатом, за это регулярно в комментариях выслушиваю критику. Однако в "стандарте", коэффициенту мощности отводится отдельный показатель. Например, у "бронзы" это 0.9, при нагрузке 50%. Не путайте с КПД. Также присутствует пассивный корректор, который сглаживает импульсы тока, но такой дроссель малой индуктивности, а поэтому весомой роли не несёт.

Так же в комментариях попадаются люди которые, пеняют на то, что не привожу примеры товаров соответствующие теме статьи. Поэтому исправляюсь: "Ginzzu MC500" 14CM и "be quiet! System Power", а так же "Ginzzu MC600".

Это не единственные товары, но в качестве примера подходят.

Уже писал, что такие БП из-за APFC становятся долговечнее, но это не единственные преимущества, так например благодаря такой работе конденсаторов, становятся не страшны "провалы"("скачки") тока, или в специфических рабочих условиях(обработка аналоговых сигналов) будет полезна особенность отсутствия высокочастотных помех(на выходных линиях). Ставьте лайк. Подписывайтесь. До свидания.

Зачем корректировать коэффициент мощности

Первая причина — она же главная

Сама по себе неактивная мощность не используется и напрямую мы за нее не платим, но она бегает по проводам, по контактам выключателей и реле, по обмоткам трансформаторов и тем самым нагружает их почем зря.

Судите сами, наш подопытный БП потребляет ток 0.756 ампер. А если бы коэффициент мощности был равен 1, то потребляемый ток составил всего 0.45 А.

«А для моей новенькой медной проводки в квартире без разницы», — скажет читатель и будет прав, но только в границах своей квартиры. Для примера возьмем большое офисное здание, в котором установлены 1000 компов. Если все они будут с корректором коэффициента мощности, то общий потребляемый ток будет 450 Ампер. А если все будут без корректора, то мы получим ток в 750 А, из которых 300 А будут лишний раз нагревать провода, кабели и обмотки генераторов, увеличивая общие потери электроэнергии. Теперь умножьте все это на масштабы города, страны или даже всей планеты.

Вторая причина, тоже важная

Импульсный блок питания компьютера имеет на входе достаточно большую емкость в виде электролитического конденсатора. Кто хоть раз вскрывал БП, знает об этом. Именно этот конденсатор является главным виновником низкого PF и необходимости использования APFC.

Дело в том, что конденсатор потребляет ток не равномерно, а только в определенные моменты. И вот в эти моменты возникает бросок тока.

Ниже желтая осциллограмма — это напряжение сети, а голубым цветом как раз обозначены импульсы тока зарядки конденсатора в моменты максимальных значений напряжения.

Все это приводит к искажению формы и симметрии синусоидального напряжения в сети. Даже на этой осциллограмме видно, что макушки синусоиды срезаны, и причина этому — как раз неравномерное потребление тока. Это негативно сказывается на работе других электроприборов, для которых «чистый» синус — залог хорошей работоспособности.

Для сравнения ниже показана осциллограмма, полученная при измерении тока через БП с APFC.

Нетрудно заметить, что форма тока в БП с APFC синхронно повторяет форму напряжения, именно это и требуется от APFC. В данном случае PF составлял 0.98. Кстати, это блок питания be quiet! Pure Power 11 500W.

Активный или пассивный PFC?

Power Factor Correction (PFC) – коррекция коэффициента мощности. Power Factor — отношение активной мощности к полной (активной плюс реактивной).

Нагрузкой же, реактивная мощность не потребляется – она на 100% отдается обратно в сеть, на следующем полупериоде. Однако, с ростом реактивной мощности, растет максимальное (за период) значение силы тока.

Слишком большая сила тока в проводах 220В – хорошо ли это? Наверное, нет. Поэтому, с реактивной мощностью по возможности борются (особенно это актуально для действительно мощных устройств, «переходящих» предел в 300-400 Ватт).

PFC – может быть пассивным или активным.

Преимущества активного метода:

Обеспечивается близкий к идеальному значению Power Factor (коэффициент мощности), вплоть до значения, близкого к 1. При PF=1, сила тока в проводе 220В не превысит значение «мощность делить на 220» (в случае меньших значений PF, сила тока – всегда несколько больше).

Недостатки активного PFC:

Повышается сложность – снижается общая надежность блока питания. Самой системе активного PFC — требуется охлаждение. Кроме того, не рекомендуют использовать системы активной коррекции с автовольтажем совместно с источниками ИБП (UPS).

Преимущества пассивной PFC:

Отсутствуют недостатки активного метода.

Недостатки:

Система – малоэффективна при больших значениях мощности.

6

Что именно выбрать? В любом случае, приобретая БП меньшей мощности (до 400-450W), в нем чаще всего вы обнаружите PFC пассивной системы, а более мощные блоки, от 600 W – чаще встречаются с активной коррекцией.

PFC активный или пассивный что лучше

PFC

Ни для кого не секрет, что одним из главных блоков компьютера является блок питания. При покупке мы обращаем свое внимание на различные характеристики: на максимальную мощность блока, характеристики системы охлаждения и на уровань шума. Но не все задаются вопросом что такое PFC?

Итак, давайте разберемся что дает PFC

Применительно к импульсным блокам питания (в системных блоках компьютеров в настоящее время используются БП только такого типа) этот термин означает наличие в блоке питания соответствующего набора схемотехнических элементов.

Power Factor Correction — переводится как «Коррекция фактора мощности», встречается также название «компенсация реактивной мощности».

Собственно фактором или коэффициентом мощности называется отношение активной мощности (мощности, потребляемой блоком питания безвозвратно) к полной, т.е. к векторной сумме активной и реактивной мощностей. По сути коэффициент мощности (не путать с КПД!) есть отношение полезной и полученной мощностей, и чем он ближе к единице – тем лучше.

PFC бывает двух разновидностей – пассивный и активный.
При работе импульсный блок питания без каких-либо дополнительных PFC потребляет мощность от сети питания короткими импульсами, приблизительно совпадающими с пиками синусоиды сетевого напряжения.

Наиболее простым и потому наиболее распространенным является так называемый пассивный PFC, представляющий собой обычный дроссель сравнительно большой индуктивности, включенный в сеть последовательно с блоком питания.

Пассивный PFC несколько сглаживает импульсы тока, растягивая их во времени – однако для серьезного влияния на коэффициент мощности необходим дроссель большой индуктивности, габариты которого не позволяют установить его внутри компьютерного блока питания. Типичный коэффициент мощности БП с пассивным PFC cоставляет всего лишь около 0,75.

Читайте также: 

Активный PFC представляет собой еще один импульсный источник питания, причем повышающий напряжение.
Как видно, форма тока, потребляемого блоком питания с активным PFC, очень мало отличается от потребления обычной резистивной нагрузки – результирующий коэффициент мощности такого блока может достигать 0,95. 0,98 при работе с полной нагрузкой.

Правда, по мере снижения нагрузки коэффициент мощности уменьшается, в минимуме опускаясь примерно до 0,7. 0,75 – то есть до уровня блоков с пассивным PFC. Впрочем, надо заметить, что пиковые значения тока потребления у блоков с активным PFC все равно даже на малой мощности оказываются заметно меньше, чем у всех прочих блоков.

Помимо того, что активный PFC обеспечивает близкий к идеальному коэффициент мощности, так еще, в отличие от пассивного, он улучшает работу блока питания — он дополнительно стабилизирует входное напряжение основного стабилизатора блока – блок становится заметно менее чувствительным к пониженному сетевому напряжению, также при использовании активного PFC достаточно легко разрабатываются блоки с универсальным питанием 110. 230В, не требующие ручного переключения напряжения сети.

Такие БП имеют специфическую особенность – их эксплуатация совместно с дешёвыми ИБП, выдающими ступенчатый сигнал при работе от батарей может приводить к сбоям в работе компьютера, поэтому производители рекомендуют использовать в таких случаях ИБП класса Smart, всегда подающие на выход синусоидальный сигнал.

Также использование активного PFC улучшает реакцию блока питания во время кратковременных (доли секунды) провалов сетевого напряжения – в такие моменты блок работает за счет энергии конденсаторов высоковольтного выпрямителя, эффективность использования которых увеличивается более чем в два раза. Ещё одним преимуществом использования активного PFC является более низкий уровень высокочастотных помех на выходных линиях, т.е. такие БП рекомендуются для использования в ПК с периферией, предназначенной для работы с аналоговым аудио/видео материалом.

А теперь немного теории

Обычная, классическая, схема выпрямления переменного напряжения сети 220V состоит из диодного моста и сглаживающего конденсатора. Проблема в том, что ток заряда конденсатора носит импульсный характер (длительность порядка 3mS) и, как следствие этого, очень большим током.

Например, для БП с нагрузкой в 200W средний ток из сети 220V будет 1A, а импульсный — в 4 раза больше. Если таких БП много и (или) они мощнее? . тогда токи будут просто сумасшедшими — не выдержит проводка, розетки, да и платить придется больше за электричество, ведь качество тока потребления весьма сильно учитывается.

Например, на больших заводах имеются специальные конденсаторные установки для компенсации «косинуса». В современной компьютерной технике столкнулись с теми же проблемами, но ставить многоэтажные конструкции никто не будет, и пошли другим путем — в блоках питания ставят специальный элемент по уменьшению «импульсности» потребляемого тока — PFC.

Разные типы разделены цветами:

  • красный — обычный БП без PFC,
  • желтый — увы, «обычный БП с пассивным PFC»,
  • зеленый — БП с пассивным PFC достаточной индуктивности.

На модели показаны процессы при включении БП и кратковременном провале через 250mS. Большой выброс напряжения при наличии пассивного PFC получается потому, что в дросселе накапливается слишком большая энергия при заряде сглаживающего конденсатора. Для борьбы с этим эффектом производят постепенное включение БП — вначале последовательно с дросселем подключается резистор для ограничения стартового тока, потом он закорачивается.

Для БП без PFC или с декоративным пассивным PFC эту роль выполняет специальный терморезистор с положительным сопротивлением, т.е. его сопротивление сильно возрастает при нагревании. При большом токе такой элемент очень быстро нагревается и величина тока уменьшается, в дальнейшем он охлаждается из-за уменьшения тока и никакого влияния на схему не оказывает. Т.о., терморезистор выполняет свои ограничивающие функции только при очень больших, стартовых токах.

Для пассивных PFC импульс тока при включении не так велик и терморезистор зачастую не выполняет свою ограничивающую функцию. В нормальных, больших пассивных PFC кроме терморезистора ставится еще специальная схема, а в «традиционных», декоративных этого нет.

И по самим графикам. Декоративный пассивный PFC дает всплеск напряжения, что может привести к пробою силовой схемы БП, усредненное напряжение несколько меньше случая без_PFC и при кратковременном пропадании питания напряжение падает на бОльшую величину, чем без_PFC. На лицо явное ухудшение динамических свойств. Нормальный пассивный PFC также имеет свои особенности. Если не учитывать начального всплеска, который в обязательном порядке должен быть компенсирован последовательностью включения, то можно сказать следующее:

— Выходное напряжение стало меньше. Это правильно, ведь оно равно не пиковому входному, как для первых двух типов БП, а «действующему». Отличие пикового от действующего равно корню из двух.
Пульсации выходного напряжения значительно меньше, ведь часть сглаживающих функций переходит на дроссель.
— Провал напряжения при кратковременном пропадании напряжения также меньше по той же причине.
— После провала следует всплеск. Это очень существенный недостаток и это основная причина, почему пассивные PFC не распространены. Этот всплеск происходит потому же, почему он происходит при включении, но для случая начального включения специальная схема может что-то откорректировать, то в работе это сделать много труднее.
— При кратковременном пропадании входного напряжения выходное меняется не так резко, как в других вариантах БП. Это очень ценно, т.к. медленное изменение напряжения схема управления БП отрабатывает весьма успешно и никаких помех на выходе БП не будет.

Для других вариантов БП при подобных провалах на выходах БП обязательно пойдет помеха, что может сказаться на надежности функционирования. Как часты кратковременные пропадания напряжения? По статистике, 90% всех нестандартных ситуаций с сетью 220V приходится как раз на такой случай. Основной источник возникновения, это переключения в энергосистеме и подключение мощных потребителей.

На рисунке показана эффективность PFC по уменьшению импульсов тока:

Для БП без PFC сила тока достигает 7.5A, пассивный PFC уменьшает ее в 1.5 раза, а нормальный PFC уменьшает ток значительно больше.

Принцип работы PFC(Power Factor Correction)

PFC(Power Factor Correction) переводится как «Коррекция фактора мощности», встречается также название «компенсация реактивной мощности». Применительно к импульсным блокам питания (в системных блоках компьютеров в настоящее время используются БП только такого типа) этот термин означает наличие в блоке питания соответствующего набора схемотехнических элементов, который также принято называть «PFC». Эти устройства предназначены для снижения потребляемой блоком питания реактивной мощности.

Собственно фактором или коэффициентом мощности называется отношение активной мощности (мощности, потребляемой блоком питания безвозвратно) к полной, т.е. к векторной сумме активной и реактивной мощностей. По сути коэффициент мощности (не путать с КПД!) есть отношение полезной и полученной мощностей, и чем он ближе к единице – тем лучше.
PFC бывает двух разновидностей – пассивный и активный.
При работе импульсный блок питания без каких-либо дополнительных PFC потребляет мощность от сети питания короткими импульсами, приблизительно совпадающими с пиками синусоиды сетевого напряжения.

Наиболее простым и потому наиболее распространенным является так называемый пассивный PFC, представляющий собой обычный дроссель сравнительно большой индуктивности, включенный в сеть последовательно с блоком питания.

Пассивный PFC несколько сглаживает импульсы тока, растягивая их во времени – однако для серьезного влияния на коэффициент мощности необходим дроссель большой индуктивности, габариты которого не позволяют установить его внутри компьютерного блока питания. Типичный коэффициент мощности БП с пассивным PFC cоставляет всего лишь около 0,75.

Активный PFC представляет собой еще один импульсный источник питания, причем повышающий напряжение.
Форма тока, потребляемого блоком питания с активным PFC, очень мало отличается от потребления обычной резистивной нагрузки – результирующий коэффициент мощности такого БП без PFCблока может достигать 0,95. 0,98 при работе с полной нагрузкой. Правда, по мере снижения нагрузки коэффициент мощности уменьшается, в минимуме опускаясь примерно до 0,7. 0,75 – то есть до уровня блоков с пассивным PFC. Впрочем, надо заметить, что пиковые значения тока потребления у блоков с активным PFC все равно даже на малой мощности оказываются заметно меньше, чем у всех прочих блоков.

Помимо того, что активный PFC обеспечивает близкий к идеальному коэффициент мощности, так еще, в отличие от пассивного, он улучшает работу блока питания — он дополнительно стабилизирует входное напряжение основного стабилизатора блока – блок становится заметно менее чувствительным к пониженному сетевому напряжению, также при использовании активного PFC достаточно легко разрабатываются блоки с универсальным питанием 110. 230В, не требующие ручного переключения напряжения сети. (Такие БП имеют специфическую особенность – их эксплуатация совместно с дешёвыми ИБП, выдающими ступенчатый сигнал при работе от батарей может приводить к сбоям в работе компьютера, поэтому производители рекомендуют использовать в таких случаях ИБП класса Smart, всегда подающие на выход синусоидальный сигнал.)

Также использование активного PFC улучшает реакцию блока питания во время кратковременных (доли секунды) провалов сетевого напряжения – в такие моменты блок работает за счет энергии конденсаторов высоковольтного выпрямителя, эффективность использования которых увеличивается более чем в два раза. Ещё одним преимуществом использования активного PFC является более низкий уровень высокочастотных помех на выходных линиях

К примеру, напряжение на 1 ноге FAN7530 зависит от делителя собранного на R10 и R11, и соответственно на конденсаторе C9.

xTechx.ru

APFC (Active Power Factor Correction, Active PFC, APFC) – активный модуль коррекции коэффициента мощности.

Читайте также:  Дебет Плюс 1.2

Состоит из катушки индуктивности, силового транзистора, диода, собственного конденсатора и иногда собственного входящего фильтра. Управляющая электроника обычно располагается на отдельной плате.

К дросселю (к земле) подключен силовой транзистор, который при включении замыкает дроссель с землёй, заставляя дроссель накапливать энергию, которая впоследствии передаётся в конденсатор через диод, размыкающий конденсатор при соединении транзистора с землёй, предотвращая конденсатор от случайной разрядки. Этим процессом управляет специальный контроллёр, который максимально приближает синусоиду получаемой мощности к результирующему коэффициенту мощности.

Эффективность в среднем достигает 0.95 -0.98 при нагрузке выше половины мощности импульсного источника питания, и уменьшается с уменьшением нагрузки достигая 0.75 – уровня БП с пассивным PFC (Passive PFC).

Из плюсов активной PFC над пассивной PFC в компьютерных блоках питания можно отметить:

  • Лучшая стабильность при кратковременных скачках напряжения (доли секунды), когда другой БП выключился бы.
  • Возможность работать в большом диапазоне входящего напряжения

Для БП с Active PFC, не стоит использовать дешёвые ИБП со ступенчатым выходным сигналом, так как это может вывести из строя БП, сам ИБП, либо к сбоям в работе компьютера. Чтобы этого не происходило, для блоков питания с Active PFC стоит подбирать ИБП с синусоидальным выходным сигналом.

Функция PFC

PFC — это Power Factor Correction, что переводится с англ. как "Коррекция фактора мощности", встречается также название "Компенсация реактивной мощности".
Применительно к импульсным блокам питания этот термин означает наличие в блоке питания соответствующего набора схемотехнических элементов, который также принято называть "PFC". Эти устройства предназначены для снижения потребляемой блоком питания реактивной мощности. Источники питания без PFC создают мощные импульсные помехи по электросети для параллельно включенных электроприборов.
Для количественной оценки внесенных искажений и помех существует коэффициент мощности (КМ или Power Factor). Собственно фактором (или коэффициентом мощности) называется отношение активной мощности (мощности, потребляемой блоком питания безвозвратно) к полной, т.е. к векторной сумме активной и реактивной мощностей. По сути коэффициент мощности (не путать с КПД!) есть отношение полезной и полученной мощностей, и чем он ближе к единице – тем лучше.

PFC

PFC

Разновидности PFC

PFC бывает двух разновидностей – пассивный и активный.
Наиболее простым и потому наиболее распространенным является так называемый пассивный PFC. Пассивные PFC делают на реактивном элементе — дросселе. К сожалению, для получения приемлемой эффективности его размеры получаются соизмеримые с размерами трансформаторного варианта построения этого блока питания, что экономически не выгодно. Большие геометрические размеры дросселя получаются потому, что он должен работать на частоте 50Hz (точнее 100Hz из-за удвоения частоты после выпрямления) и он никак не может быть меньше соответствующего трансформатора на такую же мощность. Довольно часто в БП под вывеской "пассивный PFC" скрывается дроссель весьма малых размеров. Точнее сказать, там не может быть дросселя достаточных размеров из-за весьма ограниченного места в корпусе данного БП. Подобный декоративный PFC может испортить динамические характеристики БП или стать причиной неустойчивой работы.

Активный PFC представляет собой еще один импульсный источник питания, причем повышающий напряжение.
Помимо того, что активный PFC обеспечивает близкий к идеальному коэффициент мощности, так еще, в отличие от пассивного, он улучшает работу блока питания — он дополнительно стабилизирует входное напряжение основного стабилизатора блока – блок становится заметно менее чувствительным к пониженному сетевому напряжению, также при использовании активного PFC достаточно легко разрабатываются блоки с универсальным питанием 110. 230В, не требующие ручного переключения напряжения сети.
Также использование активного PFC улучшает реакцию блока питания во время кратковременных (доли секунды) провалов сетевого напряжения – в такие моменты блок работает за счет энергии конденсаторов высоковольтного выпрямителя, эффективность использования которых увеличивается более чем в два раза. Ещё одним преимуществом использования активного PFC является более низкий уровень высокочастотных помех на выходных линиях, т.е. такие БП рекомендуются для использования в ПК с периферией, предназначенной для работы с аналоговым аудио/видео материалом.

Международные организации и PFC

Международная электротехническая комиссия (МЭК) или IEC (International Electrotechnical Commission) и международная организация по стандартизации или ISO (International Organization for Standardization) устанавливают ограничения на содержание и уровни гармоник во входном токе вторичных источников электропитания. Использование электроприборов, не удовлетворяющих стандартам этих организаций, запрещено во многих странах, поэтому разработчики серьезной аппаратуры обязательно должны об этом помнить.

xTechx.ru

PPFC ( Passive Power Factor Correction , Passive PFC ) – пассивный модуль коррекции коэффициента мощности, компенсатор реактивной мощности применяемый в импульсных источниках питания для выравнивания синусоиды и увеличения времени зарядки конденсаторов за один её пик.

Модуль коррекции коэффициента мощности нужен для уменьшения реактивной мощности в питающей сети. Её уменьшение, благотворно влияет на питающую сеть, уменьшая нагрев, разгружая подстанцию, но никаким образом не уменьшает энергопотребление.

К примеру, если у вас в блоке питания, вашего компьютера стоит пассивный модуль коррекции коэффициента мощности. Вы имеете меньший шанс на нагрев проводов в вашей квартире и это, следовательно, уменьшает шанс пожара. Иногда, наличие модуля уменьшает помехи создаваемые блоком питания в вашей сети, но современные блоки питания помех практически не создают.

Другое дело если в офисе или здании несколько сотен компьютеров и больше. Здесь без коррекционных модулей не обойтись.

Схема проста. Последовательно с блоком питания подключён дроссель (индуктор, катушка) большой индуктивности, который растягивает по времени пик синусоиды, давая довольно слабую прибавку к коэффициенту мощности (

0.750.77 в зависимости от величины дросселя).

В компьютерных блоках питания трудно разместить дроссели большого размера, поэтому прибавка коэффициента от небольших дросселей довольно мала. Но всё же, даже пассивный дроссель, очень положительно влияет на разгрузку питающей сети.

Для лучшей эффективности используются активные модули коррекции коэффициента мощности (Active PFC), которые дороже, но и в 2-3 раза эффективнее.

Реактивная мощность в блоке питания

document-propertiesНо в здании, где установлена сотня или тысяча компьютеров, учитывать реактивную мощность необходимо!

Типичное значение косинуса Фи для компьютерных блоков питания без коррекции — около 0,7, т. е. проводка должна быть рассчитана с 30% запасом по мощности.

Однако излишней нагрузкой на провода дело не ограничивается!

В самом блоке питания ток через входные высоковольтные диоды протекает в виде коротких импульсов. Ширина и амплитуда этих импульсов может меняться в зависимости от нагрузки.

Большая амплитуда тока неблагоприятно влияет на высоковольтные конденсаторы и диоды, сокращая срок их службы. Если выпрямительные диоды выбраны «впритык» (что часто бывает в дешевых моделях), то надежность всего блока питания еще более снижается.

Как определить качество блока питания

На что нужно обратить внимание первым делом:

Для того чтобы выбрать качественный блок питания, достаточно знать информацию про фирму, какая производит хорошие и качественные, а какая не самые хорошие. Но такой метод является не самым легким, так как нужно обработать достаточно большой объем информации.

Не стоит искать хороший и качественный блок питания, который будет стабильно работать, за низкую цену. Цена на хороший массовый блок начинается от 1500 рублей. Лучше потратиться на надежный системный блок, чем потом выбрасывать кучу денег на покупку нового и ремонт компьютера.

Если вы держите в руках слишком легкий блок питания — сразу же отложите его в сторону. Для стабильной работы блока, в нем должны быть установлены высокопробные радиаторы, которые обеспечивают постоянное охлаждение элементов блока. Качественные радиаторы имеют внушительный вес, и не приведут к перегревам, сбоям напряжения в каналах и излишнему шуму при работе.

Качество сборки.

Хорошим показателем качества есть радиаторная решетка блока: в качественных блоках зачастую это решетка «гриль», для нормальной вентиляции, в дешевых блоках чаще всего встречаются простые прорези в корпусе, которые не только не обеспечивают необходимую циркуляцию воздуха, но и приводят к накоплению пыли. Кроме того в дешевых блоках питания могут быть распаянные места.

Помимо вышеперечисленных факторов, по которым можно определить хороший и надежный источник питания, существует также деление блоков питания на активные и пассивные.

Требования энергоэффективности

В целях повышения энергоэффективности компьютерных блоков питания была предложена программа сертификации — 80 PLUS . Чуть позже требования программы были включены в международный стандарт энергоэффективности потребительских товаров Energy Star, который является обязательным во многих странах мира.

В стандарте 80 PLUS, кроме базовых требований, существуют несколько дополнительных уровней, которые добавлялись по мере совершенствования технологий изготовления БП.

Обозначаются уровни энергоэффективности вот такими симпатичными значками.

О КПД мы говорить не будем, это совсем другая история, а вот на коэффициент мощности как раз стоит обратить внимание. Как следует из таблицы, даже в базовых требованиях стандарта 80 PLUS коэффициент мощности должен быть не ниже 0.8, и с каждым уровнем энергоэффективности требования к коэффициенту мощности только возрастают.

Получить такой коэффициент мощности можно, только если применять активный корректор коэффициента мощности (APFC). Теперь причина применения APFC в БП становится понятной и заключается в необходимости соответствовать требованиям стандарта 80 PLUS. Кроме того, получение сертификата определенного уровня энергоэффективности является делом чести уважающего себя производителя. Ведь чем выше сертификат, тем более престижным и продвинутым среди покупателей считается блок питания.

Ссылка на основную публикацию