Nb frequency multiplier что это

Какое образование должен иметь SQl специалист
Какое образование должен иметь SQl хороший специалист?! или какие навыки? Будет база sql +.

Какое фокусное расстояние должен иметь обьектив проекционного аппарата?
Изображение предмета на кинопленке имеет высоту H1=1 см . какое фокусное расстояние F должен иметь.

Почему конструктор не должен иметь возвращаемое значение?
Почему конструктор не должен иметь возвращаемое значение? Мне кажется это было бы полезным.

Какое значение будет иметь а?
Помогите выбрать правильный вариант в этой задаче(и еще объясните, как вы считали). Заранее.

Какое значение будет иметь переменная d
Вариант 1 1. Какое значение будет иметь переменная d после выполнения операторов при a = 3, b =.

Разгон процессоров AMD и Intel: руководство Hardwareluxx

Если вы будете разгонять процессор «Vishera», то в UEFI/BIOS получите набор разных параметров. Хотя по сравнению с платформой Intel их не так много. Ниже мы привели наиболее важные из них.

Напряжения «Vishera»

  • CPU Voltage

Напряжение процессорного ядра – отличается от одного CPU к другому в зависимости от VID/качества процессора. На это напряжение следует обращать внимание большинству оверклокеров.

  • CPU-NB Voltage

Напряжение северного моста в CPU (не следует путать с напряжением чипсета); данная часть CPU работает в собственном домене частоты и напряжения. Частота CPU-NB определяет скорость работы контроллера памяти и кэша L3. Компонент CPU-NB довольно существенно влияет на общую производительность системы. На высоких частотах рекомендуется поднимать напряжение CPU-NB для повышения стабильности системы.

  • CPU Voltage Offset

Большинство материнских плат позволяют задать напряжение смещения, позволяющее увеличить напряжение выше диапазона напряжений CPU VID. Напряжение смещения добавляется к значению VID, оно может повлиять на разгон как с положительной, так и с отрицательной стороны. Фактическое напряжение рассчитывается следующим образом: CPU Voltage + Offset. Пример: VID 1,350 В + смещение 0,100 В = 1,45 В фактическое напряжение.

  • NB Voltage

Напряжение чипсета. При разгоне через увеличение множителя повышать не требуется.

  • HT Voltage

Если вы хотите разогнать процессор AMD ещё и через интерфейс HT, то может потребоваться увеличение данного напряжения.

  • VDDQ

Напряжение памяти. Зависит от используемых планок памяти.

Штатное Максимальное
1,5 — 1,65 В 1,75 В

LLC/Loadline Calibration:

Предотвращает эффект Vdroop (падение напряжения под нагрузкой). К сожалению, эта настройка встречается далеко не у каждой материнской платы AMD.

BIOS AMI Advanced/CPU Configuration

На данной вкладке находятся различные настройки системы. Перечислять не буду, на скрине все хорошо видно. Рассмотрим меню CPU Configuration.

bios

Здесь находятся настройки центрального процессора. Сразу хочу заметить, что если не представляете что-где-и-как, лучше ничего не менять, пока не будете твердо уверены, что делаете.

Overclock Mode Здесь можно выставить различные профили разгона процессора, предоставленные производителем: [Auto], [CPU, PCIE, Sync.], [CPU, PCIE, Async.] , [Optimized].

CPU Frequency (MHz) частота процессора.

PCIE Frequency (MHz) рабочая частота шины PCI EXPRESS (там, где видюха). Особой производительности с увеличением частоты не прибавляется, зато могут быть сбои работы карт расширений. Поэтому лучше оставить как есть, тем более, что при разгоне стараются ее зафиксировать 100МГЦ.

Spread Spectrum Что-то, вроде, как электромагнитного излучения. Включив данную опцию, позволит снизить излучение за счет худшей формы сигналов. Однако это может привести к сбоям в работе высокоскоростных устройств.

Boot Failure Guard Это защитная функция. Если она включена, то при неправильном разгоне выставит безопасные настройки.

Cool ‘n’ Quiet энергосберегающая функция, при малой загруженности ПК процессор снижает частоту. [Auto], [Enabled], [Disabled].

Secure Virtual Machine КТРТСН).

Enhance Halt State снижает энергопотребление для современных процессоров в режиме простоя.

L3 Cache Allocation распределение кэша… КТРТСН.

Advanced Clock Calibration функция для более тонкого разгона за счет разблокировки ранее неактивных блоков. Немного не понятно, но позволяет разблокировать неактивные ядра. В спецификации от производителя значения конфигурации — по умолчанию значение [Disabled]. Варианты конфигурации: [Disabled], [Аuto], [All Cores] и [Per Core]. При выборе [All Cores] появится опция “Value (All Cores)”. Варианты конфигурации: [+12%] [-12%]. Если выбираем [Per Core], то будут доступны параметры “Value (Core 0)”, “Value (Core 1)”, “Value (Core 2)” и “Value (Core 3)”. Варианты конфигурации: [+12%] [-12%].

Processor Maximum Frequency максимальная частота процессора.

North Bridge Maximum Frequency максимальная частота северного моста.

Processor Maximum Voltage максимальное напряжение процессора.

Multiplier/Voltage Change Если доступна опция [manual] откроются дополнительные опции.

CPU Frequency Multiplier можно задать множитель процессора.

CPU Voltage несколько вариантов: можно задавать напряжение питания для процессора либо указать изменение от номинального значения.

NB Frequency Multiplier множитель для северного моста.

NB Voltage выставляется напряжение питания для контроллера северного моста, или (в другом варианте) изменение напряжения относительно номинального.

HT Bus Speed позволяет задать частоту для шины HyperTransport. Зависит от модели процессоров.

HT Bus Width задается ширина потока по шине HyperTransport. Варианты: [Auto], [8 Bit] и [16 Bit].

Для разгона нам нужно увеличить частоту работы процессора, которая складывается из произведения множителя на частоту шины. Например, штатная частота процессора Intel Celeron D 310 равняется 2.13 ГГц, его множитель х16, а частота шины 133 МГц (133.3х16=2133 МГц).

CPU VID — Настройка BIOS. Опция CPU VID отображает информацию о текущем напряжении питания ядра процессора или идентификатор напряжения питания ядра процессора (а идентификатор напряжения питания ядра процессора в свою очередь содержит информацию о напряжении питания ядра ЦП).

Шаг четвертый: повторяйте до отказа системы, затем повысьте напряжение

Если ваш стресс-тест потерпел неудачу или вызвал сбой компьютера, но показатели температуры все еще не доходят до максимальных значений, то вы можете продолжить разгон процессора, увеличив напряжение. Увеличение напряжения, которое материнская плата передаёт на центральный процессор через блок питания, должно обеспечить стабилизацию на более высоких скоростях, хотя это также значительно повысит его температуру.

Перезагружаем компьютер в «UEFI (BIOS)» , находим раздел «Advanced Voltage Settings» и далее «CPU Core Voltage Control» . Опять же, у вас названия и значения этих параметров будут отличаться, это зависит от производителя материнской платы и версии «UEFI (BIOS)» , информацию об этих параметрах можно найти в мануале к материнской плате или на сайте её разработчика.

Здесь выполняем почти те же самые действия, немного увеличиваем напряжение, потом повторяем шаги два и три, пока ваш компьютер не завершит работу с ошибкой, а затем снова увеличиваем напряжение. Рекомендуемый шаг – 0,05 вольта, опять же крайне мелкие шажки занимают больше времени, но вы получите гораздо более надежные результаты.

В течении процесса выполнения, постоянно следите за температурными показателями, напомню, чем больше вы повышаете напряжение, тем больше будет увеличиваться температура процессора. Если проведённые вами тесты терпят неудачу даже при +2 вольта, то возможно вы просто не сможете увеличить напряжение и добиться стабильной работы системы. Вспомните про «кремниевую лотерею» – возможно, что ваш конкретный процессор не будет вести себя точно так же, как другие с тем же номером модели.

Повторяйте шаги три и четыре: увеличиваем множитель, проводим стресс-тест, если терпим неудачу, то увеличиваем напряжение. В конце концов, вы достигнете определённой точки, в которой температура процессора будет приближаться к максимальным значениям, с которым вам комфортно работать, или стресс-тесты последовательно выходят из строя и приводят к сбою компьютера. Когда это произойдет, верните показатели к последнему удачному, стабильному разгону.

В моём случае, я вообще не смог поднять напряжение – самый высокий стабильный разгон составлял 3,7 ГГц.

AM3/AM3+: советы по употреблению

AM3/AM3+: советы по употреблению

Итак, прошло время с тех пор, как компьютер был приобретен, закончился период радости от покупки, а программное обеспечение становится все более требовательным к производительности оборудования. При нехватке производительности встает вопрос: «Что делать?» Опять тратить деньги на апгрейд компа или все же попробовать выжать все соки из того, что есть? Вариант апгрейда сопряжен с большими финансовыми затратами, в то время как тонкая настройка уже имеющегося железа денег не потребует, разве что можно будет озаботиться сменой систем(ы) охлаждения, что зачастую сделает комп и менее шумным.

В сегодняшнем материале, как уже понятно из заголовка, ознакомимся с возможностями тонкой настройки систем на базе AM3/AM3+ процессоров AMD.

Перед тем как приступить к рассмотрению способов увеличения производительности, стоит рассмотреть основной перечень установленного в компьютер железа. Так сказать, заранее понять, на что можно будет рассчитывать.

Именно от материнской платы зависит, что мы сможем выжать из компьютера: она в первую очередь определяет перечень доступных для изменения настроек, которые могут повлиять на конечный результат. Также следует понимать, что оверклокинг CPU может привести к увеличению его энергопотребления, и возросшие аппетиты материнка должна удовлетворить.

Дабы понять степень запаса прочности, следует пройтись по двум основным пунктам.

1) Изучаем перечень поддерживаемых материнской платой процессоров. Для этого либо гуглим по названию платы сайт производителя и переходим к странице с техническими характеристиками, либо открываем бумажную книжку «Руководство пользователя», которая должна лежать в коробке с материнкой, и там находим ту же самую информацию. Перечисление моделей процессоров нам неинтересно, смотрим только на допуск по энергопотреблению. Там могут быть следующие значения: «Supports CPU up to 95 W», «Supports CPU up to 125 W», «Supports CPU up to 140 W». Если в технических характеристиках указано «95 W», то материнскую плату можно охарактеризовать только одним словом — днище. Даже если какие-то возможности разгона материнка может предоставить, это небезопасно и потребует более вдумчивого подхода. Материнские платы с допуском до 125 Вт вполне справятся с процессорами бюджетного и среднего классов, но со старшими представителями линеек камней Phenom II и FX Series запаса прочности может не хватить. Мат-платы с допуском 140 Вт, как правило, уже не слабы и серьезных палок в колеса вставлять не будут.

2) Изучаем возможности системы охлаждения материнской платы. Как правило, охлаждения требует чипсет (обычно радиатор находится под процессорным разъемом), а также преобразователь питания камня, который обычно находится слева и/или сверху от процессора. Если на преобразователе питания нет радиаторов, то при разгоне, скорее всего, придется ограничиться настройками без увеличения напряжений, так как иначе есть вероятность спалить железо. Если радиаторы есть, то для проверки их эффективности запускаем типичную для компьютера нагрузку и измеряем температуру радиаторов — температуры под нагрузкой в пределах 70 градусов не должны пугать. При отсутствии соответствующего термометра измерить температуру можно тактильно: радиатор теплый — отлично (

35-38 градусов), горячий — тоже хорошо (38-45 градусов), можно удержать палец в течение нескольких секунд — также причин для беспокойства нет (45-50 градусов), обжигает палец в течение пары секунд — температура уже высоковата, но некритична (в пределах 60 градусов), жжет при малейшем прикосновении — тут уже надо серьезно задуматься о том, как охлаждать логику эффективнее. Самый простой способ сбить градусы — установить дополнительный вентилятор. В компьютерных магазинах хорошо распространены и недорого стоят вертушки типоразмера 80 х 80 мм, для обдува радиаторов материнской платы — самое то.

После ознакомления с базовыми характеристиками, определяющими запас прочности материнки, стоит ознакомиться с основным перечнем настроек, которые будем изменять в процессе разгона. Для этого на этапе начальной загрузки системы жмем кнопку F2 или Delete (в зависимости от производителя материнской платы) и попадаем в настройки BIOS’а. После чего, ищем нужные нам настройки и отмечаем те, которыми будем пользоваться.

1) Настройки по управлению частотой работы процессора. Частота работы камня зависит от двух величин — базовой частоты и коэффициента умножения проца. Если перемножить коэффициент умножения и базовую частоту, то полученное число и является итоговой частотой работы. Материнская плата должна уметь управлять обеими величинами. Строка меню, отвечающая за изменение базовой частоты, в зависимости от производителя может называться «CPU Bus Frequency», «Adjust CPU FSB Frequency» «CPU Host Clock Control / CPU Frequency» или «CPU Clock». Дабы убедиться, что нашли именно то, что нужно, следует помнить, что штатное значение данного показателя на всех AM3/AM3+ процессорах должно составлять 200 МГц. Строка меню, отвечающая за изменение коэффициента умножения камня, в зависимости от производителя может называться «CPU Ratio», «Adjust CPU Ratio» «CPU Clock Ratio», «CPU Frequency Multiplier» или «Core FID». Чтобы понять, что это именно та настройка, что нам нужна, следует помнить, что штатное значение этого показателя должно составлять указанную в характеристиках процессора частоту, поделенную на 200.

2) Настройки по управлению периферийными частотами. К основным периферийным частотам можно отнести NB Core / CPU-NB (отвечает за производительность контроллера памяти, встроенного в процессор, также данная настройка влияет на частоту работы L3 кэш-памяти камня, если таковая у него присутствует), и HyperTransport (определяет скорость передачи данных по шине). Строка меню, отвечающая за изменение частоты NB Core / CPU-NB, у разных производителей может называться «CPU/ NB Frequency», «Adjust CPU-NB Ratio», «CPU NorthBridge Freq.», «NB Frequency Multiplier» или «NB FID». Представление данных может быть в виде итоговой частоты (2000 или 2200 МГц в зависимости от используемого процессора), либо в виде коэффициента умножения (10-11). Строка меню, отвечающая за изменение частоты HyperTransport, у разных производителей может называться «HT Link Speed», «HT Link Frequency», «HT Frequency» или «HT Bus Speed». Представление данных, как и в предыдущих случаях, может быть либо в виде итоговой частоты (2000 или 2600 МГц), либо в виде коэффициента умножения (10-13).

3) Настройки по управлению памятью. Среди настроек материнская плата должна позволять изменять частоту работы RAM, а также тайминги памяти. Строка меню, отвечающая за изменение частоты работы в зависимости от производителя может называться «Memory Frequency», «DRAM Frequency», «FSB/ DRAM Ratio», «Set Memory Clock» или «Memclock Value». Представление данных может быть как в виде итоговой частоты, так и в виде множителя относительно уровня базовой частоты. Для AM3-процессоров, как правило, доступны частоты DDR3-800 — DDR3-1600 (т. е. множители от х4 до х8), для AM3+ процессоров — DDR3-800 — DDR3-2400 (т. е. множители от х4 до х12). Настройкам таймингов обычно посвящен отдельный подраздел с настройками, на их рассмотрении остановимся уже в процессе разгона.

4) Настройки по управлению напряжениями. В идеале материнская плата должна позволять изменять напряжение питания процессора, NB Core / CPU-NB и памяти, остальные напряжения вторичны и в большинстве случаев не нужны. Названия пунктов настроек, как правило, такие же, как и при установке частот, разве что в них присутствует слово «Voltage» или что-то в этом роде. Отмечу, что в зависимости от производителя материнской платы установка напряжения может производиться в двух режимах: в обычном, где просто вручную задается уровень напряжения, и в offset-режиме, где задается «поправка» относительно штатного значения. Если материнская плата устанавливает напряжение в offset-режиме, то это либо указано явно (наличием слова «offset»), либо перед уровнем выставленного напряжения будет стоять знак «+» или «-», и здесь главное не перепутать: 1,3 В -нормальное напряжение для большинства процессоров, а +1,3 В практически гарантированно убьет камень.

5) Настройки по разблокировке выключенных блоков процессоров (только для AM3, AM3+ камни разблокировке не поддаются). Ряд процев серий Athlon II и Phenom II могут обладать скрытыми возможностями, к примеру, при некоторой доле везения из Phenom II X2 или Phenom II X3 можно получить полноценный четырехъядерный камень. Такие настройки могут называться «Advanced Clock Calibration / AAC» или «NVIDIA Core Calibration / NCC», в зависимости от производителя материнской платы также за разблокировку могут отвечать пункты меню «ASUS Core Unlocker / CPU Core Activation», «ASRock UCC / CPU Active Core Control», «BIO-unlocKING», «CPU Unlock» или «Unlock CPU Core».

AM3/AM3+: советы по употреблению

Помимо материнской платы определяющим фактором для конечного результата разгона является система охлаждения процессора. Условно процессорные кулеры можно поделить на три подгруппы.

1) BOX-кулер, с которым поставлялся процессор, либо его аналог. Данные системы охлаждения не отличаются высокой эффективностью и к тому же зачастую издают много шума. Оверклокинг на таких кулерах возможен, однако в этом случае следует воздержаться от разгона с увеличением напряжения питания процессора и больше внимания уделить разгону периферии, которая не вносит большого вклада в энергопотребление и тепловыделение камня, что суть одно и то же.

2) Кулеры стоимостью $30-50, как правило, башенного типа и построены на тепловых трубках. Большинство систем охлаждения в данной ценовой категории уже гораздо эффективнее BOX-кулера, что позволяет поднять напряжение питания процессора на 5-10% и добиться стабильности на пропорционально более высокой частоте работы. Как дополнительный бонус, такая система охлаждения, скорее всего, будет и менее шумной, нежели BOX-кулер.

3) Суперкулеры с ценой порядка $100 и более. Это уже поистине своего рода «монстры», способные рассеивать 200-300 Вт тепла. Такие системы охлаждения актуальны при желании выжать из процессора максимум возможного.

Итак, возможности материнских плат были изучены ранее, тип используемой в компьютере системы охлаждения определен. Пора перейти к самому интересному — непосредственно к рассмотрению того, что и на сколько можно разогнать, а также какие дивиденды это принесет.

Nb frequency multiplier что это

FAQ по разгону процессоров AMD

Принцип минимально безопасного разгона процессоров с шиной HyperTransport(сокращенно HT)

На примере имеем систему без разгона с такими штатными характеристиками:

1 Материнская плата с сокет AM2+
2 Процессор Athlon 2 X2-240 2800 Mhz, 1.4 вольта, множитель 14-x. Делитель частоты для DRAM:FSB RATIO 16:6.
3 Память DDR2 — 800Mhz (400DDR*2), тайминги 6-6-6-18 по умолчанию, 1.8 вольта.
4 Частота шины HyperTransport 2000Mhz — множитель по умолчанию 200*5(1000 умноженная на два автоматически, т.к. режим DDR)
5 Частота NB(северный мост) 2000Mhz — множитель по умолчанию 200*10.
p.s. Напряжения все штатные.

Но к этому вы вернёмся чуть ниже, изучив принципы разгона.

Что делать с HyperTransport при разгоне CPU ?

Что-бы небыло никаких подводных камней частота шины HyperTransport всегда должна оставаться штатной по умолчанию, т.к. на этой шине работает и периферия. Ведь при разгоне этой шины увеличивается, например, задающая частота для работы HDD, что может привести к ошибкам и потере данных, а так-же выходу из строя. Аналогично касается и внешних устройств, например дискретной звуковой карты, которая может вообще не включиться или глючить на завышенной частоте HT. Напряжение на HT тоже желательно не менять со штатного, чтобы не возникли вышеописанные проблемы.

Что делать с NB при разгоне CPU?

В принципе штатный параметр частоты можно не менять, но небольшое завышение частоты, порядка 10% от штатного повредить не должно. Напряжение NB тоже лучше не изменять.

Какой должна быть частотоа ОЗУ при разгоне?

В зависимости от качества и сборки ОЗУ, она зачастую может работать на повышенных частотах и не меняя ей штатных таймингов по умолчанию. Для DDR2-800 это обычно диапазон 800-1000Mhz, поэтому планки памяти подбираются индивидуально и экспериментально. Но, чтобы наверняка и стабильно всё работало, частоты памяти и тайминги должны оставаться штатными, в данном случае на примере памяим 800Mhz 6-6-6-18 оставим эти показатели не изменёнными.

Что делать с начальной задающей шиной FSB 200Mhz ?

Данный параметр нужно увеличивать, как выше было указано — начальная частота умножается на встроенный множитель процессора. Пример: 250*14=3500mhz. В идеале цифру начальной шины желательно подбирать так, чтобы частоты NB, HyperTransport и ОЗУ по их множителям оставались штатными как без разгоны.

Виды разгонов CPU

Самый простой метод — увеличение цифры множителя CPU, если процессор имеет не заблокированный множитель. В этом случае множители по умолчанию и частоты NB, HyperTransport и ОЗУ менять не нужно. При заблокированном множителе этот способ не годится.

Второй способ — увеличение частоты системной шины, в этом случае множители по умолчанию и как следствие частоты NB, HyperTransport и ОЗУ необходимо менять до штатных показаталей.

Стабильный разгон частоты процессора обычно составляет 20-30% на боксовом кулере, не изменяя напряжения на мостиках чипсетов, памяти и процессоре.

Основываясь на этих данных что мы имееем.

Как видно из примеров, везде минимальная задающая частота генератора — 200Mhz(начальная шина). Далее она уже автоматически умножается на встроенный множитель для нужной работы приведённого выше встроенного компонета на материнской плате, но для процессора она умножается на его начальный множитель. При разгоне этой задающей шины пропорционально увеличиваются частоты: HyperTransport, NB, CPU относительно его множителя и для ОЗУ. Так вот, наша задача чтобы все эти параметры не выходили за рамки штатных, кроме частоты процессора разумеется, иначе теряется смысл его разгона.

Вот теперь, зная эти данные можно применять разгон на практике, но в нашем случаей на приведённой выше начальной конфигурации.

Шаг 1 — увеличиние частоты начальный шины до 250Mhz — частота процессора получится 3500Mhz, обычно они так гонятся без проблем без повышения питаний.

Шаг 2 — Уменьшаем множитель на шине HyperTransport, т.к. она уже стала равна 2500Mhz, а это почти гарантированные сбои. Меняем множитель HT с 5 на 4 — получаем те-же 2000Mhz.

Шаг 3 — Уменьшаем множитель на NB c 10 на 8 и снова получаем по умолчанию 2000Mhz.

Шаг 4 — Уменьшаем частоты памяти с 800 до 667 — контроллер памяти находится в процессоре и так-же делитель частоты CPU для работы ОЗУ. Для каждой модели процессора с контроллером ОЗУ делитель свой. Но, поскольку частота разогнанного процессора стала выше, делитель делит полную частоту, поэтому и скорость памяти пропорционально увеличивается с 800Mhz до 1000Mhz.

Шаг 5 — сохраняем настройки BIOS-Setup. Далее, если компьютер включается и стартует система можно сказать вышел успешный разгон. Но, для достоверности стабильности нужно провести стресс-тесты.

Внимание! Для разгона процессоров с технологией TurboCore — обязательно отключать TurboCore в BIOS-Setup материнской платы.

Какие стресс-тесты лучше использовать?

1) Программа для нагрева процессора «OCCT-Перестройка». Для максимально возможного результата прогрева желательно использовать режим «Средняя матрица» в течении 60 минут, при этом, не желательно до результатов окончания теста использовать компьютер для других целей, во избежание возможных погрешностей теста. После завершения тестирования программа остановит тест и создаст скриншоты с результатами тестирования, которые автоматически сохранятся в каталоги программы. Внимание! Обязательно следите и мониторьте температуру CPU, сильный перегрев вышедший за рабочий диапазон может повредить процессору и компонентам компьютера, как следствие. Тестируйте с осторожностью!

2) Программа-тест на стабильность памяти/процессора «Prime 95». Данный тест проводится максимум в течении 15-20 минут, и если за это время нет ошибок, можно считать что конфигурация работает стабильно. Хочу заметить, при установке разных модулей памяти с несовместимыми таймингами и SPD тест может выдать ошибку, в этом случае необходимо тестировать с одной планкой ОЗУ, чтобы понять, — причина в нестабильности системы в целом или несовместимости именно этих модулей памяти с конкретной конфигурацией.

Для достоверности результатов можно воспользоваться альтернативными тестами для прогрева CPU, но, наиболее эффективным стресс-тестом для современных AMD процессоров оказалась OCCT. Проверено экспериментально-опытным путём, при тестировании ряда различных экземпляров результаты оказались лучше.

Примечания и сокращения:

NB — северный мост.
ОЗУ — оперативная память.
Вход в BIOS-Setup обычно по клавише DEL или F1 сразу после включения компьютера и до загрузки операционной системы. Назначенная клавиша входа зависит от изготовителя.

Список допустимых сокращений и терминов в ветке «Разгон процессоров AMD»:

Проц — процессор, CPU.
Мосты — южный, северный, кобинированный. При написании в теме уточнять за какой идёт речь.
RAM — оперативная память, ОЗУ.
Материнка, мамка, мать, сис.плата — материнская, системная плата.

P.S. FAQ со временем будет расширяться по мере нахождения свободного времени и поступления интересующей всех информации. Если желаете внести какой-то важный пункт — прошу в личку. В случае найденных ошибок и опечаток большая просьба сообщать только в личку — спасибо. V.K.(c)
————————————————————————-

Памятка:
Крайне не рекомендуется использовать тег [q] при цитировании большИх объемов информации(во избежании путаницы). Рекомендуется пользоваться тегом [i]

Nb frequency multiplier что это

Доброго времени суток, товарищи оверклокеры и будущие оверклокеры, а также просто читатели.

В этой статье я напишу как разогнать процессор AMD Phenom II х4 965ВЕ. Я не собираюсь выдвигать эту писанину как единственную, неповторимую и безошибочную инструкцию к разгону. Я постарался написать ее предельно простым и понятным языком. Все выводы и рекомендации здесь обосновываются на моем личном опыте и наблюдениях, а также многочисленных FAQ’ах оверклокерских форумов, чтении и анализе различных статей по разгону, ну и, само собой, обмене опытом при общении на разных оверклокерских форумах.

В этой статье вы не встретите никаких философских размышлений о природе разгона, о его целях и задачах и т.д.

Здесь я простым, обычным языком поделюсь своим опытом по разгону и дам ряд рекомендаций и советов.

Заранее предупреждаю, что статья предназначена для людей компьютерно-грамотных, более-менее понимающих сленг компьютерщиков, умеющих самостоятельно разобрать/собрать из комплектующих системный блок, разбирающихся и различающих процессоры хотя бы по их названиям, знающих их основные характеристики, умеющих залезать и немного копаться в биос, но, тем не менее — не разбирающихся (плохо разбирающихся) или только начинающих разбираться в разгоне.

Уже опытные люди, ничего нового из этой статейки не найдут — разве что могут немного "встряхнуть" память, да указать мне найденные ими ошибки.

Теперь об ошибках. Поскольку я — человек, то могу допустить ошибки. Чем больше вы их заметите — тем лучше. Напишите тут — и я их исправлю. С вашей помощью эта статья может стать еще лучше, еще информативнее. Если вы считаете, что я недостаточно осветил некоторые вопросы — тоже пишите.

На самом деле я должен был написать эту инструкцию давно — года два-три назад. По тем или иным причинам это не удавалось. Главной причиной, само собой, является могучая лень. Тем более, по-прежнему есть люди, которые интересуются разгоном процессоров феном2.

Как и полагается в любой статье по разгону — дискеймер:

Напоминаю, что вы действуете на свой страх и риск. Я за ваши манипуляции (после прочтения моей и не моей тоже статьи) с вашим и не вашим компьютером и за последующие за ними негативные и позитивные тоже последствия не отвечаю.

Причиной создания этой статьи, является обращение ко мне новичков за советами по разгону процессоров, конкретно — AMD Phenom II (далее — просто феном2). Еще учесть следует то, что я вспоминаю молодого себя, когда ничего не умел и не знал. И о существовании таких гайдов даже и не подозревал.

Немного про себя [ эту часть я настоятельно рекомендую пропустить, ибо ничего полезного она не несет].

[Кстати, вопрос всем — может эту часть стоит удалить? Может она и не нужна вовсе статье?]

Начал впервые разгон с 2008 года — первый свой процессор Intel Pentium Dual Core E 2160, самостоятельно — без чтения соответствующих материалов и знания чего-либо — даже самому удивительно, разогнал постепенно по шине до

2400 МГц — тогда я вообще не знал, что напряжение на ядре надо увеличивать. Но все равно — материнка была откровенным УГ с убогим же биос, которая позволяла лишь шину менять, напряжение же было залочено. Потом я купил хорошую матплату на MSI (названия уже за давностью лет не помню) и вроде бы (как мне тогда казалось) отличный по крайней мере — внешне, как мне тогда казалось кулер Asus Triton 75 который на деле оказался фуфлом и разогнал с увеличением напряжения до

3300 МГц. Затем купил дорогущий в те времена Zalman CNPS 9700 A LED. В те времена я даже и не догадывался, что мосфеты при увеличении напряжения имеют свойство греться, да и вообще ничего не знал про то, как осуществляется питание процессора, что такое температурные пределы и троттлинг, что такое ФАКи и прочее — вообще с интернетом в нашем городе те времена все было очень печально.

Соответственно, тогда я не читал никаких статей и форумов поскольку инета не было . Приходилось все самому постигать опытным путем — медленно, зато верно. Просто удивительно, что тогда я ничего не спалил. Причиной этому, скорее всего, было то, что я неосознанно применял методику медленного разгона. Я и понятия не имел про тестирование на стабильность процессора и памяти. О том, что разгоняют видеокарту — вообще не знал 🙂

Попутно вынужденно разгонял оперативную память — FSB ведь одна, сами понимаете. Через год сменил платформу на АМД, приобрел оверклокерский (как мне тогда казалось) комплект памяти Kingston HyperX 1066 МГц, мать Gigabyte GA-MA790X-UD3P (кстати — великолепная материнка), ну и процессор PhenomII x 3 710 2600 МГц. Специально для разгона. Только тогда я уже начал почитывать (лишь почитывать и то лишь временами) сайт overclockers.ru

Со временем, мать сменил на Gigabyte GA-890XA-UD3 — тоже отличная оверклокерская мать. Сейчас думаю — а почему сменил мать — северный мост в обоих случаях один и тот же 790Х, южный же с SB 750 изменился на SB 850. Ведь фактически — разницы не было.

Перебрал три процессора, тупо покупая и продавая по очереди (в нашем городе до сих пор нету магазина, которая практиковала бы такую замечательную фичу как "moneyback") PhenomII x 3 710, один процессор PhenomII x 3 720ВЕ — и все это ради получения заветных как мне тогда казалось 4 ГГц. Не получилось. Как я сейчас понимаю, виной были первые ревизии PhenomII. Все они стабильно разлачивались до полноценных PhenomII x 4. Но, максимум частотного потолка у них был разный — от 3400 до 3700 МГц. Танцы с бубном вокруг биоса, напряжений и т.д. и т.п., в том числе и в режиме отключения нескольких ядер, не помогали. В итоге купил 6-ядерный свежевышедший и чуток уже скинувший цены PhenomII x 6 1090 BE. Вот он сразу без базара взял стабильные 4000 МГц при приемлемом напряжении. На 4100-4200 МГц в виндоус заходил, но стабильности не было. Кстати, для этого я сменил кулер на "народный" и очень популярный (да и сейчас вроде) тогда Scythe Mugen 2 Rev . B (спасибо тогдашнему голосованию на форуме оверклокерс.ру — " Лучший башенный кулер").

Получив заветные 4 ГГц на феном2, у меня несколько снизился интерес к разгону. И я подумал, что неплохо было бы перенестись на свежайший тогда сокет 1155 — и я, продав феном2, приобрел процессор Intel Core i 5 2500 K. К тому времени я сдружился с одним магазином и перебрал три таких процессора и нашел "тот самый проц", который давал стабильные 5 ГГц на воздухе.

Для этого я заказал в этом же магазине топовую тогда матплату MSI P 67 A GD 80 (лишь через полгодика позднее вышел дорогущий Big Bang-Marshal). Но потом увидел замечательную плату — ASRock P 67 Extreme 6 ( B 3) — сразу взял ее — только из-за 10 внутренних сата-портов (у меня тогда как раз 10 штук 3,5"-хардов подкопилось). Опять же там были великолепные кнопки clear _ cmos , power , reset (а MSI GD80 я продал). Также в том же самом магазине я заказал и взял тогдашний лучший кулер в мире =) ThermalRight Silver Arrow — который и сейчас лучший, если навесить на него пару-тройку TR TY -150. Поскольку стабильные 5 ГГц (при рекомендуемых 1,40 В) уже были покорены, я поставил процессор на "экономичные" 4200 МГц при 1,32 В. Что странно, через полгодика он перестал держать 5 ГГц, несмотря на колдования -копания в биосе. Ну да ладно — бывает, я подумал и благополучно забыл об этом.

Потом, со временем, я взял для тестов Noctua NH D 14, TR Archon, ну и Zalman CNPS 10 X Flex, "для референсу", так сказать. И написал Три короля.

Со временем добыл еще Архонтов, итого их у меня стало пять. Одолжил в магазине еще пару штук — итого стало семь.И написал Сравнение семи Архонтов.

А потом несколько людей написали мне, что неплохо было бы осветить тему разгона процессоров феном2. Вот об этом и пойдет речь.

Итак — вернемся же к нашим баранам феномам.

Итак, у вас есть процессор феном2 х4 965ВЕ. Напомню ,что буквы ВЕ означают Black Edition, то есть разблокированные в сторону увеличения множители, главным образом — CPU и CPU/NB.

Также у вас в обязательном порядке должен быть хороший процессорный кулер и хорошая материнская плата. Это необходимые условия для безопасного и стабильного разгона. Особенно это важно, при большой нагрузке на процессор в течение длительного времени.

ИМХО, подходит ли тот или иной кулер для разгона, можно определить двумя способами:

— по отзывам пользователей эти девайсов на различных сайтах (например, здесь — http://market.yandex.ru/);

— по обзорным/сравнительным статьям на многочисленных оверских сайтах (например, здесь — http://www.overclockers.ru/reviews/cooler/).

Определить, подходит ли материнская плата к разгону можно по-чайниковски навскидку — по присутствию/отсутствию радиаторов на цепях питания, также называющихся мосфетами (полевыми транзисторами, полевиками). Также пригодность матплаты к разгону прямо можно определить по числу фаз питания процессора. Чем больше — тем лучше.

Также необходим БП с несколько избыточной мощностью — поскольку после разгона процессор начинает потреблять больше энергии. Подробнее об этом я высказался здесь. Настоятельно рекомендую ее прочитать, во избежание возникновения "лишних" вопросов.

Разгонять проц, по идее, очень легко. У нас есть процессор феном2 х4 965ВЕ, у которого номинальный множитель равен 17 и, следовательно, номинальная тактовая частота равна 17 х 200 МГц = 3400 МГц. Номинальное напряжение процессора при этом — 1,40 В.

Для разгона процессора есть два пути: по шине и по множителю. О них подробнее ниже.

1. Разгон по шине. Как делать?

По номиналу частота шины равна 200 МГц. Увеличивая ее, мы можем увеличить итоговую частоту процессора. Например, увеличим с 200 МГц до 230 МГц. Тогда при номинальном множителе проца, равном 17, имеем итоговую частоту в 17 х 230МГц = 3910 МГц. И мы получили прирост в 3910-3400 = 510 МГц.

Но, просто так процессор на своем номинальном напряжении (равном 1,40 В) эту частоту в 3910 МГц не возьмет — тупо не хватит питания процессору — чтобы работать на этой частоте. Поэтому приходится немного увеличивать напряжение. Я частоту в 3910 МГц взял лишь в качестве примера, поскольку для каждого процессора потолок разгона индивидуален, равно как и напряжение, при котором проц возьмет эту частоту.

Возьмем три одинаковых процессора — , допустим, первый из них легко возьмет 4 ГГц, при напряжении 1,46 В.

Второй процессор, также допустим, осилит 4 ГГц лишь при сильном "кочегаривании" — напряжении, равном 1,50 В.

А третий процессор, допустим, возьмет максимум 1,38 ГГц — как бы ни мы увеличивали напряжение.

Вывод: разгон — это лотерея. Потенциал разгона у каждого процессора — свой.

Перед разгоном следует, через биос, выключить все энергосберегающие функции. Эти функции биос работают на автомате, самостоятельно выставляя напряжение питания процессоров и его частоту. Цель этих энергосберегающих технологий — сберечь электроэнергию в состоянии простоя компа, путем уменьшения множителя до 4 (4 х 200 МГц = 800 МГц), так и подаваемого на проц напряжения, следовательно, снижая общее энергопотребление системы.

Нередки случаи, когда разогнанный процессор работал некорректно из-за этих функций. Поэтому их следует выключить.

В биосе они скрываются под именами Cool n quiet, а также C 1 E — их следует поставить из [enabled] в положение [disabled].

1.1. Методика разгона по шине

1. Заходим в биос. Сбрасываем все на дефолт клавишей F2 или F5 или F8 или F9 и т.д. — у каждой матплаты по-своему. Сохраняемся и выходим.

2. Заходим в биос.

Смотрим ту часть, которая отвечает за разгон. В моем случае все выглядит таким образом:

Запоминаем (новичкам можно и на бумажке записать) эти цифры:

Current CPU Speed — текущая частота процессора.

Target CPU Speed — частота процессора, которую мы задаем на данный момент.

Current Memory Frequency — текущая частота оперативной памяти.

Current NB Frequency — текущая частота встроенного в процессор контроллера памяти и кэш памяти третьего уровня (L3), его еще называют CPU/NB. Именно эта частота решает, с какой скоростью будут "разговаривать" процессор и оперативная память. Частоту CPU/NB тоже можно разогнать — и прирост от нее более заметный, нежели при аналогичном разгоне самого процессора.

Current HT Link Speed — текущая частота шины Hyper Transport (далее — HT), которая соединяет северный мост и процессор. Хотя изначально реальные частоты CPU/NB и HT равны — эффективная скорость (точнее — пропускная способность) у шины HT настолько большая (5,2 миллиардов посылок в секунду), что разгон ей даже и не нужен.

К тому же ее архитектура такова, что частота HT не может быть выше частоты CPU/NB. Поэтому следует разгонять только CPU/NB, а частоту HT оставляют на номинале — 2000 МГц.

3. Теперь начинаем фиксить необходимые параметры:

AI Overclock Tuner — из [Auto] ставим в [Manual], то есть автоматический разгон переводим в ручной режим. Это позволяет нам управлять частотой шины.

CPU Ratio — множитель проца переводим из [Auto] в [17], при помощи клавиш "плюс" и "минус". То есть фиксируем/закрепляем номинальный множитель — чтобы "случайно" биос автоматом не изменил его.

CPU Bus Frequency — шину проца из [Auto] ставим [200] — это номинальные 200 МГц.

PCI E Frequency — шину PCI-E фиксим на номинальных 100 МГц.

Memory Frequency — частоту памяти фиксим на родных 1333 МГц.

CPU / NB Frequency — частоту фиксим на родных 2000 МГц.

HT Link Speed — также фиксим на родных 2000 Мгц.

CPU Spread Spectrum — ставим в [Disabled] — отключаем фичу, которая снижает ЭМИ от компьютера, это дает стабильность при разгоне. Почему — читаем.

PCI E Spread Spectrum — тоже ставим в [Disabled] — чисто для перестраховки.

EPU Power Saving Mode — энергосберегающая технология фирмы Asus, позволяющая регулировать энергопотребление компонентов матплаты. Как я писал выше — в состоянии разгона — всякие "энергосберегалки" — это зло, поэтому ставим ее в [Disabled].

Затем идут регулировки напряжений (подраздел Digi + VRM) — здесь трогаем только те, которые непосредственно отвечают за управление напряжением процессора. Это:

CPU Voltage Frequency — переводим из положения [Auto] ставим в [Manual] — для ручной регулировки вольтажа.

CPU & NB Voltage -переводим из [Offset Mode] в [Manual Mode] — это позволяет вручную прямо указать напряжение проца. В режиме же [Offset Mode] напряжение проца указывается смещением (плюс или минус) относительно номинального напряжения, коим является, как на фотке четко видно — 1,368 В. А такая регулировка нам это ни к чему — только больше путает новичков.

CPU Manual Voltage — при помощи клавиш "плюс" и "минус" фиксим номинальное напряжение — 1,368750 В.

Вот таким образом мы зафиксировали все номинальные напряжения компьютера, чтобы никакая автоматика биоса уже не смогла их изменить. Сохраняем биос и перезагружаемся.

4. Заходим в ОС.

Скачиваем и устанавливаем самые свежие/последние версии программ:

CPU Z — для мониторинга состояния процессора — множителя и итоговой частота процессора, а также его напряжения.

Core Temp — для мониторинга температуры процессора.

Lin Х — программа для создания максимальной нагрузки процессору. Эта программа нагружает процессор системой линейных алгебраических уравнений, которые равномерно под завязку нагружают все ядра процессора, поскольку хорошо распараллеливаются.

Для более-менее точного тестирования стабильности процессора на указанной связке [частота CPU — напряжение CPU ] в принципе достаточно в настройках программы LinX указать 10 прогонов, с использованием более 50% объема от общей оперативной памяти. При 8 Гб памяти я рекомендую использовать 5 Гб памяти.

На картинке снизу я указал, как вы можете заметить, 10 прогонов при использовании 1 Гб памяти (1024 Миб). МиБ ( мебибайт) — это тот же российский мегабайт — 2 20, но по стандарту по стандарту МЭК. Так что разницы нет и бояться не стоит.

5. Открываем CPU-Z, Core Temp и Linx. Окна их ставим рядом так, чтобы они не мешали друг другу.

Запускаем LinX в 10 прогонов.

И смотрим, до скольки максимум прогревается процессор. Запоминаем производительность процессора в Гфлопс.

6. Заходим в биос.

И увеличиваем CPU Bus Frequency c 200 до 210 МГц.

Как можно заметить параметр Target CPU Speed одновременно увеличивается до 3570 МГц. Т.е. мы разогнали проц до этой частоты с номинальных 3400 МГц.

Одновременно с этим растут и частоты памяти, CPU/NB и HT.

Память — 1399 МГц.

CPU/NB и HT — по 2100 МГц.

Частоты памяти, CPU/NB и HT несильно отличаются от номинальных — поэтому их не трогаем.

Под словом " несильно отличаются" подразумеваются, что они попадают в промежуток (+/-) 100 МГц от номинальных частот.

Сохраняемся и перезагружаемся.

7. Заходим в ОС.

Запускаем LinX в 10 прогонов.

И смотрим, до скольки максимум прогревается процессор. Запоминаем производительность процессора в Гфлопс.

8. Заходим в биос.

И увеличиваем CPU Bus Frequency c 210 до 220 МГц.

Как можно заметить параметр Target CPU Speed одновременно увеличивается до 3740 МГц. Т.е. мы разогнали проц до этой частоты с номинальных 3400 МГц.

Но — одновременно с этим растут и частоты памяти, CPU/NB и HT.

Память стала 1466 МГц.

CPU/NB и HT стали по 2200 МГц.

Поэтому чтобы частоты памяти сильно высоко не "задралась" относительно номинальных 1333 МГц, уменьшаем ее как на картинках ниже (также это можно проделать клавишами плюс и минус) до 1172 МГц.

А частоты CPU/NB и HT таким же макаром образом снижаем до приемлемых 1980 МГц. Напомню, что номинальные частоты CPU/NB и HT равны 2000 МГц.

Таким образом, при разгоне через шину, мы постоянно должны следить, чтобы частоты памяти CPU/NB и HT не сильно далеко уходили от номинальных. Почему — объясню позднее.

Сохраняемся и перезагружаемся.

9. Заходим в ОС.

Запускаем LinX в 10 прогонов.

И смотрим, до скольки максимум прогревается процессор. Запоминаем производительность процессора в Гфлопс.

10. Заходим в биос.

И увеличиваем CPU Bus Frequency c 220 до 230 МГц.

Как можно заметить параметр Target CPU Speed одновременно увеличивается до 3910 МГц. Т.е. мы разогнали проц до этой частоты с номинальных 3400 МГц.

Одновременно с этим растут и частоты памяти, CPU/NB и HT.

Память — 1225 МГц.

CPU/NB и HT — по 2070 МГц.

Частоты памяти, CPU/NB и HT несильно отличаются от номинальных — поэтому их не трогаем.

Сохраняемся и перезагружаемся.

11. Заходим в ОС.

Запускаем LinX в 10 прогонов.

И смотрим, до скольки максимум прогревается процессор. Запоминаем производительность процессора в Гфлопс.

12. Заходим в биос.

И увеличиваем CPU Bus Frequency c 230 до 240 МГц.

Как можно заметить параметр Target CPU Speed одновременно увеличивается до 4080 МГц. Т.е. мы разогнали проц до этой частоты с номинальных 3400 МГц.

Но — одновременно с этим растут и частоты памяти, CPU/NB и HT.

Память стала 1279 МГц. Ее не трогаем, поскольку она в входит в промежуток 1333 МГц (+/-) 100 МГц.

CPU/NB и HT стали по 2160 МГц.

Частоты CPU/NB и HT снижаем до приемлемых 1920 МГц. Напомню, что номинальные частоты CPU/NB и HT равны 2000 МГц.

Таким образом, при разгоне через шину, мы постоянно должны следить, чтобы частоты памяти CPU/NB и HT не сильно далеко уходили от номинальных. Почему — объясню позднее.

Сохраняемся и перезагружаемся.

13. Заходим в ОС.

Опа! Вдруг возникает синий экран смерти — это означает одно — для данной частоты процессора ( 4080 МГц) выставленного процессорного напряжения в биос (по п.3) — 1,368750 Вне хватает.

Нажимаем кнопку reset и перезагружаемся.

14. Заходим в биос.

По п.3 находим параметр CPU Manual Voltage — и снова при помощи клавиш "плюс" и "минус" повышаем и фиксим напряжение — 1,381250 В.

Положительные отзывы тех, кто уже разогнал ЦП

Однако в Сети полно тех, кто уже менял значение CPU Frequency. Что это был полезный опыт, никто и не отрицает. Но сколько человек добились успеха? Стоит сразу сказать, что отрицательных комментариев намного больше. У большинства ЦП просто не выдержали таких нагрузок. Тем не менее нашлись и те, кто считает разгон чуть ли не достижением. Однако они отмечают, что никогда не пытались сразу заставить работать процессор на максимальных частотах. Разгон производился постепенно. Также многие установили себе намного более мощные кулеры, что тоже сыграло положительную роль. Как ни странно, пользователи отмечают, что прирост производительности оказался ощутимым. Вероятно, им просто повезло. Однако у всех компьютер и по сей день работает стабильно. Без всяких проблем.

Ручная настройка

Включаем компьютер. Для перехода в BIOS нажимаем клавишу «F1» или «Delete» — в зависимости от материнки. Переходим в раздел, отвечающий за центральный процессор и оперативную память, ищем строку с параметром частоты ОЗУ.

Если в BIOS есть пункт «MB Intelligent Tweaker (M.I.T.)», нажимаем «Ctrl + F1» в главном меню — должна появиться еще одна категория с настройками. В ней находим строку «System Memory Multiplier».

Если пункта M.I.T. нет, скорей всего, используется «AMI BIOS». Ищем вкладку «Advanced BIOS Features», переходим к параметру «Advanced DRAM Configuration».

Если установлен «UEFI BIOS», нажимаем «F7» — раздел «Advanced Mode», переходим к вкладке «Ai Tweaker», изменяем частоту, используя выпадающее меню «Memory Frequency».

Регулируемая частота

Процессоры — это микросхемы, которые включают миллиарды транзисторов. Высокая плотность компоновки позволяет уместить в одном квадратном сантиметре электрическую схему размером с футбольное поле. Такая конструктивная особенность ставит жесткие условия для работы электроники.

Так, для эффективной работы процессору приходится динамически управлять тактовой частотой. Это полезно для производительности или, наоборот, для снижения нагрева и потребления, поскольку система балансирует на идеальном соотношении мощности и эффективности.

Фирменные технологии, включая Intel Turbo Boost и AMD Precision Boost, лишь частично отвечают за работу алгоритмов управления частотой, их основная цель — повышение частоты сверх базового значения (разгон). Однако динамическая частота берет начало далеко за пределами процессорных технологий — отправной точкой в формировании частоты процессора является тактовый генератор.

Тактовый генератор

Это микросхема, которая синхронизирует работу компьютерных комплектующих. Другими словами, это точные часы, которые независимо и равномерно отбивают такт за тактом. Основываясь на времени между тактами, остальная электроника понимает, когда и как нужно работать.

В современных системах частота тактового генератора зафиксирована на отметке 100 МГц, хотя и может варьироваться в пределах нескольких процентов, чтобы избежать интерференции собственного излучения с высокочастотным излучением других компонентов.

Множитель

Процессор управляет частотой ядер с помощью множителя. Чтобы получить необходимую частоту ядер, система умножает постоянное значение частоты генератора на необходимое значение множителя. В таком случае динамическая частота касается только процессора, тогда как остальные компоненты подчиняются собственным правилам формирования частоты.

До появления новых процессоров, множитель оставался постоянной величиной, потому что его блокировали на заводе аппаратно. Пользователи довольствовались ручной регулировкой частоты через шину: чем выше частота тактового генератора, тем выше частота ядер. В прошлом комплектующие не требовали предельно стабильной частоты BCLK, а в современных платформах ей уделяют особое внимание.

Например, разгоняя систему через шину, мы не только поднимаем частоту процессора, но и увеличиваем частоту оперативной памяти, графического ядра и даже накопителей. К перепадам частоты чувствителен контроллер твердотельного накопителя: он может сыпать ошибками даже при колебаниях шины на 2-3 МГц от заводского значения. Чтобы избежать этого, производители сделали множитель динамическим.

Силиконовая лотерея

И третий элемент, который участвует в разгоне — это сам процессор. Разгон является лотереей, и нельзя со 100% уверенностью сказать, что любой процессор с индексом К получится разогнать до частоты 5000 MHz, не говоря уже о 5300–5500 MHz (имеется в виду именно стабильный разгон). Оценить шансы на выигрыш в лотерее можно, пройдя по ссылке, где собрана статистика по разгону различных процессоров.

Nb frequency multiplier что это

ОГЛАВЛЕНИЕ:

Вкладка «Memory» имеет всего две группы, первая из которых — General (общее) отвечает за основные характеристики памяти.

Memory

  • Type — тип оперативной памяти, например, DDR, DDR2, DDR3.
  • Size — объём памяти, измеряется в мегабайтах.
  • Channels # — количество каналов памяти. Используется для определения наличия многоканального доступа к памяти.
  • DC mode — режим двухканального доступа. Существуют чипсеты, которые могут по-разному организовывать двухканальный доступ. Из простых методов это symmetric (симметричный) — когда на каждом канале находятся одинаковые модули памяти, либо assymetric, когда память используется разной структуры и/или объёма. Ассиметричный режим поддерживают чипсеты Intel, начиная с 915P и NVIDIA, начиная с Nforce2.
  • NB Frequency — частота контроллера памяти. Начиная с AMD K10 и Intel Nehalem, встроенный контроллер памяти получил раздельное тактование от ядер процессора. Данный пункт указывает его частоту. Для систем с контроллером памяти, находящимся в чипсете, данный пункт неактивен, что и можно наблюдать.

Следующая группа — Timings. Посвящена таймингам памяти, характеризующим время выполнения памятью определённой типовой операции.

  • Frequency — частота памяти, реальная. То есть, DDR2-800 будет передавать данные по шине с частотой 400МГц, но за счёт удвоенной частоты передачи данных будет иметь скорость, как обычная память на частоте 800МГц, что и используется маркетологами для политики «больших чисел». Так что не стоит пугаться вдвое меньшей частоты. Однако, бывает, что частота всё равно отличается слегка от той, что должно быть (см. следующий пункт).
  • FSB:DRAM — показывает делитель памяти, то есть, величину, характеризующую соотношение частоты памяти и системной шины. Например, поскольку частота шины составляет 266МГц, а памяти DDR2-800 — 400МГц, то соотношение будет 2:3. Стоит отметить, что на асинхронных контроллерах данное поле будет отображать «asynch.«, что говорит о полной независимости частоты памяти от шины. Для десктопов такой чипсет существует только один — ATI RD600.

AsynchСкриншот вкладки памяти на RD600.

Делители отсутствуют, как класс по причине асинхронности чипсета, да и тайминги далеко не на всех платформах можно такие выставить — 3-0-1-0.

Ссылка на основную публикацию