Расчет дисперсии в excel

​КОВАРИАЦИЯ.Г​ пункта в списке)​.​, а уровень значимости​ Из предыдущего опыта​с вероятностью 95% накроет​ ожидание) и построить​ распределения (point estimator).​ (см. ниже), т.е.​ сразу отразятся в​ СТАНДОТКЛОН.В(), у СТАНДОТКЛОН.Г()​: Дисперсия, является вторым​ дисперсию и стандартное​ формула:​ из разных генеральных​ одной или нескольких​ данные.​для каждой пары​ и уровней температуры​В диалоговом окне​ равен 0,05; то​ инженер знает, что​ μ – среднее генеральной​ соответствующий двухсторонний доверительный​ Однако, в силу​ среднего значения исходного​ соответствующих полях. После​ в знаменателе просто​ центральным моментом, обозначается​

​ отклонение выборки. Также​CV = σ / ǩ,​ совокупностей. Эта форма​ независимых переменных. Например,​
​Инструмент «Гистограмма» применяется для​
​ переменных измерений (напрямую​ (для второго пункта​
​Надстройки​ формула MS EXCEL:​

​ стандартное отклонение время​ совокупности, из которого​ интервал.​ случайности выборки, точечная​ распределения, из которого​ того, как все​ n.​ D[X], VAR(х), V(x).​ вычислим дисперсию случайной​CV – коэффициент вариации;​

​ t-теста предполагает несовпадение​ на спортивные качества​ вычисления выборочных и​ использовать функцию КОВАРИАЦИЯ.Г​ в списке), из​установите флажок​=СРЗНАЧ(B20:B79)-ДОВЕРИТ.НОРМ(0,05;σ; СЧЁТ(B20:B79))​ отклика составляет 8​ взята выборка. Эти​Как известно из Центральной​

Дисперсия случайной величины

​ оценка не совпадает​ взята выборка.​ числа совокупности занесены,​

​Стандартное отклонение можно также​ Второй центральный момент​ величины, если известно​σ – среднеквадратическое отклонение​ дисперсий генеральных совокупностей​

​ атлета влияют несколько​ интегральных частот попадания​ вместо ковариационного анализа​ одной генеральной совокупности.​

​Пакет анализа​​вернет левую границу​​ мсек. Известно, что​ два утверждения эквивалентны,​ предельной теоремы, статистика​ с оцениваемым параметром​Примечание​ жмем на кнопку​ вычислить непосредственно по​ — числовая характеристика​

​ ее распределение.​ по выборке;​ и обычно называется​

​ факторов, включая возраст,​ данных в указанные​

​ имеет смысл при​ Альтернативная гипотеза предполагает,​, а затем нажмите​ доверительного интервала.​ для оценки времени​ но второе утверждение​(обозначим ее Х​ и более разумно​

​: О вычислении доверительных​​«OK»​ нижеуказанным формулам (см.​ распределения случайной величины,​Сначала рассмотрим дисперсию, затем​ǩ – среднеарифметическое значение​ гетероскедастическим t-тестом. Если​ рост и вес.​ интервалы значений. При​ наличии только двух​

​ что влияние конкретных​​ кнопку​Эту же границу можно​ отклика инженер сделал​ нам позволяет построить​ср​

​ было бы указывать​ интервалов при оценке​.​ файл примера)​ которая является мерой​ стандартное отклонение.​ разброса значений.​ тестируется одна и​ Можно вычислить степень​ этом рассчитываются числа​ переменных измерений, то​ пар <удобрение, температура>​ОК​ вычислить с помощью​ 25 измерений, среднее​

​ доверительный интервал.​

​) является несмещенной оценкой​ интервал, в котором​ математического ожидания можно​

​Результат расчета будет выведен​

​ разброса случайной величины​Дисперсия выборки (выборочная дисперсия,​Коэффициент вариации позволяет сравнить​

​ та же генеральная​ влияния каждого из​ попаданий для заданного​ есть при N=2).​ превышает влияние отдельно​.​

​ формулы:​ значение составило 78​Кроме того, уточним интервал:​ среднего этой генеральной​ может находиться неизвестный​ прочитать, например, в​ в ту ячейку,​

​=КОРЕНЬ((СУММКВ(Выборка)-СЧЁТ(Выборка)*СРЗНАЧ(Выборка)^2)/(СЧЁТ(Выборка)-1))​ относительно математического ожидания.​ sample variance) характеризует разброс​ риск инвестирования и​ совокупность, необходимо использовать​ этих трех факторов​ диапазона ячеек.​ Элемент по диагонали​

Стандартное отклонение выборки

​ удобрения и отдельно​Если​=СРЗНАЧ(B20:B79)-НОРМ.СТ.ОБР(1-0,05/2)*σ/КОРЕНЬ(СЧЁТ(B20:B79))​ мсек.​ случайная величина, распределенная​

​ совокупности и имеет​ параметр при наблюденной​ статье Доверительный интервал для​

​ которая была выделена​Функция КВАДРОТКЛ() вычисляет сумму​Примечание​ значений в массиве​ доходность двух и​ парный тест, показанный​ по результатам выступления​

​Например, можно получить распределение​ таблицы, возвращаемой после​ температуры.​Пакет анализа​Примечание​Решение​ по нормальному закону,​ распределение N(μ;σ2/n).​ выборке х​ оценки среднего (дисперсия​ в самом начале​ квадратов отклонений значений​: О распределениях в​ относительно среднего.​ более портфелей активов.​ в следующем примере.​

​ спортсмена, а затем​ успеваемости по шкале​ проведения ковариационного анализа,​Двухфакторный дисперсионный анализ без​отсутствует в списке​: Функция ДОВЕРИТ.НОРМ() появилась​: Инженер хочет знать​ с вероятностью 95%​Примечание:​1​ известна) в MS​ процедуры поиска среднего​ от их среднего.​

​ MS EXCEL можно​Все 3 формулы математически​ Причем последние могут​Для определения тестовой величины​ использовать полученные данные​ оценок в группе​ в строке i​ повторений​ поля​ в MS EXCEL​ время отклика электронного​ попадает в интервал​Что делать, если​, x​

​ EXCEL.​ квадратичного отклонения.​ Эта функция вернет​ прочитать в статье Распределения​
​ эквивалентны.​
​ существенно отличаться. То​

Другие меры разброса

​t​ для предсказания выступления​ из 20 студентов.​ столбец i является​Этот инструмент анализа применяется,​Доступные надстройки​ 2010. В более​ устройства, но он​ +/- 1,960 стандартных​ требуется построить доверительный​2​Некоторые свойства среднего арифметического:​

​Также рассчитать значение среднеквадратичного​ тот же результат,​ случайной величины в​Из первой формулы видно,​ есть показатель увязывает​используется следующая формула.​ другого спортсмена.​ Таблица гистограммы состоит​ ковариационным анализом i-ой​ если данные можно​

​, нажмите кнопку​ ранних версиях MS​

Теоретическое отступление

Напомним, что корреляционной связью называют статистическую связь, состоящую в том, что различным значениям одной переменной соответствуют различные средние значения другой (с изменением значения Х среднее значение Y изменяется закономерным образом). Предполагается, что обе переменные Х и Y являются случайными величинами и имеют некий случайный разброс относительно их среднего значения .

Примечание . Если случайную природу имеет только одна переменная, например, Y, а значения другой являются детерминированными (задаваемыми исследователем), то можно говорить только о регрессии.

Таким образом, например, при исследовании зависимости среднегодовой температуры нельзя говорить о корреляции температуры и года наблюдения и, соответственно, применять показатели корреляции с соответствующей их интерпретацией.

Корреляционная связь между переменными может возникнуть несколькими путями:

  1. Наличие причинной зависимости между переменными. Например, количество инвестиций в научные исследования (переменная Х) и количество полученных патентов (Y). Первая переменная выступает как независимая переменная (фактор) , вторая — зависимая переменная (результат) . Необходимо помнить, что зависимость величин обуславливает наличие корреляционной связи между ними, но не наоборот.
  2. Наличие сопряженности (общей причины). Например, с ростом организации растет фонд оплаты труда (ФОТ) и затраты на аренду помещений. Очевидно, что неправильно предполагать, что аренда помещений зависит от ФОТ. Обе этих переменных во многих случаях линейно зависят от количества персонала.
  3. Взаимовлияние переменных (при изменении одной, вторая переменная изменяется, и наоборот). При таком подходе допустимы две постановки задачи; любая переменная может выступать как в роли независимой переменной и в роли зависимой.

Таким образом, показатель корреляции показывает, насколько сильна линейная взаимосвязь между двумя факторами (если она есть), а регрессия позволяет прогнозировать один фактор на основе другого.

Корреляция , как и любой другой статистический показатель, при правильном применении может быть полезной, но она также имеет и ограничения по использованию. Если показывает четко выраженную линейную зависимость или полное отсутствие взаимосвязи, то корреляция замечательно это отразит. Но, если данные показывают нелинейную взаимосвязь (например, квадратичную), наличие отдельных групп значений или выбросов, то вычисленное значение коэффициента корреляции может ввести в заблуждение (см. файл примера ).

Корреляция близкая к 1 или -1 (т.е. близкая по модулю к 1) показывает сильную линейную взаимосвязь переменных, значение близкое к 0 показывает отсутствие взаимосвязи. Положительная корреляция означает, что с ростом одного показателя другой в среднем увеличивается, а при отрицательной – уменьшается.

Для вычисления коэффициента корреляции требуется, чтобы сопоставляемые переменные удовлетворяли следующим условиям:

  • количество переменных должно быть равно двум;
  • переменные должны быть количественными (например, частота, вес, цена). Вычисленное среднее значение этих переменных имеет понятный смысл: средняя цена или средний вес пациента. В отличие от количественных, качественные (номинальные) переменные принимают значения лишь из конечного набора категорий (например, пол или группа крови). Этим значениям условно сопоставлены числовые значения (например, женский пол – 1, а мужской – 2). Понятно, что в этом случае вычисление среднего значения , которое требуется для нахождения корреляции , некорректно, а значит некорректно и вычисление самой корреляции ;
  • переменные должны быть случайными величинами и иметь .

Двумерные данные могут иметь различную структуру. Для работы с некоторыми из них требуются определенные подходы:

  • Для данных с нелинейной связью корреляцию нужно использовать с осторожностью. Для некоторых задач бывает полезно преобразовать одну или обе переменных так, чтобы получить линейную взаимосвязь (для этого требуется сделать предположение о виде нелинейной связи, чтобы предложить нужный тип преобразования).
  • С помощью диаграммы рассеяния у некоторых данных можно наблюдать неравную вариацию (разброс). Проблема неодинаковой вариации состоит в том, что места с высокой вариацией не только предоставляют наименее точную информацию, но и оказывают наибольшее влияние при расчете статистических показателей. Эту проблему также часто решают с помощью преобразования данных, например, с помощью логарифмирования.
  • У некоторых данных можно наблюдать разделение на группы (clustering), что может свидетельствовать о необходимости разделения совокупности на части.
  • Выброс (резко отклоняющееся значение) может исказить вычисленное значение коэффициента корреляции. Выброс может быть причиной случайности, ошибки при сборе данных или могут действительно отражать некую особенность взаимосвязи. Так как выброс сильно отклоняется от среднего значения, то он вносит большой вклад при расчете показателя. Часто расчет статистических показателей производят с и без учета выбросов.

Расчет ковариации роста и падения цен двух видов акций в Excel

В таблице Excel внесены данные роста (положительное число) или падения цены (отрицательное) двух различных ценных бумаг на протяжении 12 месяцев года относительно некоторой начальной величины. Определить ковариацию двух диапазонов данных и сделать выводы. Сделать отчет доступным для пользователей Excel 2007.

Вид исходной таблицы:

В данном примере исследуется вся генеральная выборка. Для расчета можно использовать функцию КОВАРИАЦИЯ.Г, однако результаты не будут доступны для пользователей более старых версий Excel. Применим следующую формулу:

В результате получим:

Это значение свидетельствует о достаточно большой взаимосвязи между исследуемыми значениями. Поскольку число отрицательное, данная взаимосвязь является обратной. То есть, с ростом цены одной акции наблюдается падение цены второй и наоборот. Можно предположить, что эти акции принадлежат двум конкурирующим компаниям.

Использование корреляции

Вычисление корреляции особенно широко используется в экономике, социологических исследованиях, медицине и биометрии — везде, где можно получить два массива данных, между которыми может обнаружиться связь.

Рассчитать корреляцию можно вручную, выполняя несложные арифметические действия. Однако процесс вычисления оказывается очень трудоемким, если набор данных велик. Особенность метода в том, что он требует сбора большого количества исходных данных, чтобы наиболее точно отобразить, есть ли связь между признаками. Поэтому серьезное использование корреляционного анализа невозможно без применения вычислительной техники. Одной из наиболее популярных и доступных программ для решения этой задачи является .

Плюсы такого кредитования

Расчеты векселями

Оно в последнее время обрело обширную популярность, особенно на предприятиях, силами которых образуется единая промышленная группа. Ведь именно на базе такого кредита и осуществляются расчеты за товарные позиции/услуги.

Вот основные положительные нюансы, на которые стоит рассчитывать, используя этот тип займа:

  • отсутствие необходимости внесения предоплаты за нужную товарную позицию или сервис, что заметно облегчает взаимные отношения между сторонами;
  • приобретение со стороны покупателя не только товарной позиции, но и отсрочки по платежу, что способствует расширению возможностей по дальнейшей закупке товара;
  • невысокая ставка %, порождающая спрос на покупаемые товары или услуги, а также создающая выгодные условия сделок для всех сторон;
  • высокий уровень гарантий для поставщика от вероятных форс-мажорных обстоятельств, ведь все риски теперь находятся на стороне банковской организации.

Такое кредитование имеет немало особенностей. Особая ликвидность наблюдается у бумаг, относящихся к крупнейшим и востребованным банковским структурам.

Надстройка Пакет анализа

В для вычисления ковариации и корреляции имеются одноименные инструменты анализа .

После вызова инструмента появляется диалоговое окно, которое содержит следующие поля:

  • Входной интервал : нужно ввести ссылку на диапазон с исходными данными для 2-х переменных
  • Группирование : как правило, исходные данные вводятся в 2 столбца
  • Метки в первой строке : если установлена галочка, то Входной интервал должен содержать заголовки столбцов. Рекомендуется устанавливать галочку, чтобы результат работы Надстройки содержал информативные столбцы
  • Выходной интервал : диапазон ячеек, куда будут помещены результаты вычислений. Достаточно указать левую верхнюю ячейку этого диапазона.

Надстройка возвращает вычисленные значения корреляции и ковариации (для ковариации также вычисляются дисперсии обоих случайных величин).

Функция КОВАРИАЦИЯ.В в Excel предназначена для расчета коэффициента ковариации двух наборов данных (массивов или диапазонов ячеек, хранящих числовые значения), являющихся выборками соответствующих диапазонов данных, и возвращает соответствующее числовое значение.

Функция КОВАРИАЦИЯ.Г в Excel используется для расчета коэффициента ковариации всей совокупности двух диапазонов данных (генеральной совокупности) и возвращает соответствующее значение.

Функция КОВАР в Excel предназначена для расчета коэффициента ковариации двух любых наборов числовых данных, являющихся генеральными совокупностями.

Оценка статистической значимости коэффициента корреляции

Для того чтобы проверить гипотезу, мы должны знать распределение случайной величины, т.е. коэффициента корреляции r. Обычно, проверку гипотезы осуществляют не для r, а для случайной величины t r:

которая имеет с n-2 степенями свободы.

Если вычисленное значение случайной величины |t r | больше, чем критическое значение t α,n-2 (α- заданный ), то нулевую гипотезу отклоняют (взаимосвязь величин является статистически значимой).

Регрессионный анализ в Excel

Показывает влияние одних значений (самостоятельных, независимых) на зависимую переменную. К примеру, как зависит количество экономически активного населения от числа предприятий, величины заработной платы и др. параметров. Или: как влияют иностранные инвестиции, цены на энергоресурсы и др. на уровень ВВП.

Результат анализа позволяет выделять приоритеты. И основываясь на главных факторах, прогнозировать, планировать развитие приоритетных направлений, принимать управленческие решения.

  • линейной (у = а + bx);
  • параболической (y = a + bx + cx2);
  • экспоненциальной (y = a * exp(bx));
  • степенной (y = a*x^b);
  • гиперболической (y = b/x + a);
  • логарифмической (y = b * 1n(x) + a);
  • показательной (y = a * b^x).

Рассмотрим на примере построение регрессионной модели в Excel и интерпретацию результатов. Возьмем линейный тип регрессии.

Задача. На 6 предприятиях была проанализирована среднемесячная заработная плата и количество уволившихся сотрудников. Необходимо определить зависимость числа уволившихся сотрудников от средней зарплаты.

Модель линейной регрессии имеет следующий вид:

У = а0 + а1х1 +…+акхк.

Где а – коэффициенты регрессии, х – влияющие переменные, к – число факторов.

В нашем примере в качестве У выступает показатель уволившихся работников. Влияющий фактор – заработная плата (х).

В Excel существуют встроенные функции, с помощью которых можно рассчитать параметры модели линейной регрессии. Но быстрее это сделает надстройка «Пакет анализа».

Активируем мощный аналитический инструмент:

  1. Нажимаем кнопку «Офис» и переходим на вкладку «Параметры Excel». «Надстройки».
  2. Внизу, под выпадающим списком, в поле «Управление» будет надпись «Надстройки Excel» (если ее нет, нажмите на флажок справа и выберите). И кнопка «Перейти». Жмем.
  3. Открывается список доступных надстроек. Выбираем «Пакет анализа» и нажимаем ОК.

После активации надстройка будет доступна на вкладке «Данные».

Теперь займемся непосредственно регрессионным анализом.

  1. Открываем меню инструмента «Анализ данных». Выбираем «Регрессия».
  2. Откроется меню для выбора входных значений и параметров вывода (где отобразить результат). В полях для исходных данных указываем диапазон описываемого параметра (У) и влияющего на него фактора (Х). Остальное можно и не заполнять.
  3. После нажатия ОК, программа отобразит расчеты на новом листе (можно выбрать интервал для отображения на текущем листе или назначить вывод в новую книгу).

В первую очередь обращаем внимание на R-квадрат и коэффициенты. R-квадрат – коэффициент детерминации

В нашем примере – 0,755, или 75,5%. Это означает, что расчетные параметры модели на 75,5% объясняют зависимость между изучаемыми параметрами. Чем выше коэффициент детерминации, тем качественнее модель. Хорошо – выше 0,8. Плохо – меньше 0,5 (такой анализ вряд ли можно считать резонным). В нашем примере – «неплохо»

R-квадрат – коэффициент детерминации. В нашем примере – 0,755, или 75,5%. Это означает, что расчетные параметры модели на 75,5% объясняют зависимость между изучаемыми параметрами. Чем выше коэффициент детерминации, тем качественнее модель. Хорошо – выше 0,8. Плохо – меньше 0,5 (такой анализ вряд ли можно считать резонным). В нашем примере – «неплохо».

Коэффициент 64,1428 показывает, каким будет Y, если все переменные в рассматриваемой модели будут равны 0. То есть на значение анализируемого параметра влияют и другие факторы, не описанные в модели.

Коэффициент -0,16285 показывает весомость переменной Х на Y. То есть среднемесячная заработная плата в пределах данной модели влияет на количество уволившихся с весом -0,16285 (это небольшая степень влияния). Знак «-» указывает на отрицательное влияние: чем больше зарплата, тем меньше уволившихся. Что справедливо.

3. Вычисляем коэффициенты уравнения линейной регрессии.

Уравнение линейной регрессии представляет собой уравнение прямой, аппроксимирующей (приблизительно описывающей) зависимость между случайными величинами X и Y. Если считать, что величина X свободная, а Y зависимая от Х, то уравнение регрессии запишется следующим образом

Y = a + b X (3.1), где:

Рассчитанный по формуле (3.2) коэффициент b называют коэффициентом линейной регрессии. В некоторых источниках a называют постоянным коэффициентом регрессии и b соответственно переменным.

Погрешности предсказания Y по заданному значению X вычисляются по формулам:

Величину σ y/x (формула 3.4) еще называют остаточным средним квадратическим отклонением , оно характеризует уход величины Y от линии регрессии, описываемой уравнением (3.1), при фиксированном (заданном) значении X.

3.3 Вычислим коэффициент b по формуле (3.2)

b = -0.72028 0.55582 = -0.40035

3.4 Вычислим коэффициент a по формуле (3.3)

a = 30.50000 — (-0.40035 25.75000) = 40.80894

3.5 Оценим погрешности уравнения регрессии .

3.5.1 Извлечем из S y 2 квадратный корень получим:

= 0.31437

3.5.4 Вычислим относительную погрешность по формуле (3.5)

δ y/x = (0.31437 / 30.50000)100% = 1.03073%

Как строить поле корреляции в excel. Регрессия и excel

Регрессионный анализ в Microsoft Excel – наиболее полное руководств по использованию MS Excel для решения задач регрессионного анализа в области бизнес-аналитики. Конрад Карлберг доступно объясняет теоретические вопросы, знание которых поможет вам избежать многих ошибок как при самостоятельном проведении регрессионного анализа, так и при оценке результатов анализа, выполненного другими людьми. Весь материал, от простых корреляций и t-тестов до множественного ковариационного анализа, основан на реальных примерах и сопровождается подробным описанием соответствующих пошаговых процедур.

В книге обсуждаются особенности и противоречия, связанные с функциями Excel для работы с регрессией, рассматриваются последствия использования каждой их опции и каждого аргумента и объясняется, как надежно применять регрессионные методы в самых разных областях, от медицинских исследований до финансового анализа.

Конрад Карлберг. Регрессионный анализ в Microsoft Excel. – М.: Диалектика, 2017. – 400 с.

Скачать заметку в формате или , примеры в формате

Глава 1. Оценка изменчивости данных

В распоряжении статистиков имеется множество показателей вариации (изменчивости). Один из них – сумма квадратов отклонений индивидуальных значений от среднего. В Excel для него используется функция КВАДРОТКЛ(). Но чаще используется дисперсия. Дисперсия — это среднее квадратов отклонений. Дисперсия нечувствительна к количеству значений в исследуемом наборе данных (в то время как сумма квадратов отклонений растет с числом измерений).

Программа Excel предлагает две функции, возвращающие дисперсию: ДИСП.Г() и ДИСП.В():

  • Используйте функцию ДИСП.Г(), если подлежащие обработке значения образуют генеральную совокупность. Т.е., значения, содержащиеся в диапазоне, являются единственными значениями, которые вас интересуют.
  • Используйте функцию ДИСП.В(), если подлежащие обработке значения образуют выборку из совокупности большего объема. Предполагается, что имеются дополнительные значения, дисперсию которых вы также можете оценить.

Если такая величина, как среднее значение или коэффициент корреляции, рассчитывается на основе генеральной совокупности, то она называется параметром. Аналогичная величина, рассчитываемая на основе выборки, называется статистикой. Отсчитывая отклонения от среднего значения в данном наборе, вы получите сумму квадратов отклонений меньшей величины, чем если бы отсчитывали их от любого другого значения. Аналогичное утверждение справедливо и для дисперсии.

Чем больше объем выборки, тем точнее рассчитанное значение статистики. Но не существует ни одной выборки с объемом меньше объема генеральной совокупности, относительно которой вы могли бы быть уверены в том, что значение статистики совпадает со значением параметра.

Допустим, у вас есть набор из 100 значений роста, среднее которых отличается от среднего по генеральной совокупности, каким бы малым ни было это различие. Рассчитав дисперсию для выборки, вы получите некоторое ее значение, скажем, 4. Это значение меньше любого другого, которое можно получить, рассчитывая отклонение каждого из 100 значений роста относительно любого значения, отличного от среднего по выборке, в там числе и относительно истинного среднего по генеральной совокупности. Поэтому вычисленная дисперсия будет отличаться, причем в меньшую сторону, от дисперсии, которую вы получили бы, если бы каким-то образом узнали и использовали не выборочное среднее, а параметр генеральной совокупности.

Средняя сумма квадратов, определенная для выборки, дает нижнюю оценку дисперсии генеральной совокупности. Вычисленную таким способом дисперсию называют смещенной оценкой. Оказывается, чтобы исключить смещение и получить несмещенную оценку, достаточно разделить сумму квадратов отклонений не на n , где n — размер выборки, а на n – 1 .

Величина n – 1 называется количеством (числом) степеней свободы. Существуют разные способы расчета этой величины, хотя все они включают либо вычитание некоторого числа из размера выборки, либо подсчет количества категорий, в которые попадают наблюдения.

Суть различия между функциями ДИСП.Г() и ДИСП.В() состоит в следующем:

  • В функции ДИСП.Г() сумма квадратов делится на количество наблюдений и, следовательно, представляет смещенную оценку дисперсии, истинное среднее.
  • В функции ДИСП.В() сумма квадратов делится на количество наблюдений минус 1, т.е. на количество степеней свободы, что дает более точную, несмещенную оценку дисперсии генеральной совокупности, из которой была извлечена данная выборка.

Стандартное отклонение (англ. standard deviation , SD) – есть квадратный корень из дисперсии:

Возведение отклонений в квадрат переводит шкалу измерений в другую метрику, являющуюся квадратом исходной: метры — в квадратные метры, доллары — в квадратные доллары и т.д. Стандартное отклонение — это корень квадратный из дисперсии, и поэтому оно возвращает нас к исходным единицам измерения. Что удобнее.

Часто приходится рассчитывать стандартное отклонение после того, как данных были подвергнуты некоторым манипуляциям. И хотя в этих случаях результаты несомненно являются стандартными отклонениями, их принято называть стандартными ошибками . Существует несколько разновидностей стандартных ошибок, в том числе стандартная ошибка измерения, стандартная ошибка пропорции, стандартная ошибка среднего.

Предположим, вы собрали данные о росте 25 случайно выбранных взрослых мужчин в каждом из 50 штатов. Далее вы вычисляете средний рост взрослых мужчин в каждом штате. Полученные 50 средних значений в свою очередь можно считать наблюдениями. Исходя из этого, вы могли бы рассчитать их стандартное отклонение, которое и является стандартной ошибкой среднего . Рис. 1. позволяет сравнить распределение 1250 исходных индивидуальных значений (данные о росте 25 мужчин по каждому из 50 штатов) с распределением средних значений 50 штатов. Формула для оценки стандартной ошибки среднего (т.е. стандартного отклонения средних значений, а не индивидуальных наблюдений):

где – стандартная ошибка среднего; s – стандартное отклонение исходных наблюдений; n – количество наблюдений в выборке.

Рис. 1. Вариация средних значений от штата к штату значительно меньше вариации индивидуальных результатов наблюдений

В статистике существует соглашение относительно использования греческих и латинских букв для обозначения статистических величин. Греческими буквами принято обозначать параметры генеральной совокупности, латинскими — выборочные статистики. Следовательно, если речь идет о стандартном отклонении генеральной совокупности, мы записываем его как σ; если же рассматривается стандартное отклонение выборки, то используем обозначение s. Что касается символов для обозначения средних, то они согласуются между собой не столь удачно. Среднее по генеральной совокупности обозначается греческой буквой μ. Однако для представления выборочного среднего традиционно используется символ X̅.

z-оценка выражает положение наблюдения в распределении в единицах стандартного отклонения. Например, z = 1,5 означает, что наблюдение отстоит от среднего на 1,5 стандартного отклонения в сторону больших значений. Термин z-оценка используют для индивидуальных оценок, т.е. для измерений, приписываемых отдельным элементам выборки. В отношении таких статистик (например, среднее значение по штату) используют термин z-значение :

где X̅ – среднее значение выборки, μ – среднее значение генеральной совокупности, – стандартная ошибка средних набора выборок:

где σ – стандартная ошибка генеральной совокупности (индивидуальных измерений), n – размер выборки.

Предположим, вы работаете инструктором в гольф-клубе. Вы имели возможность в течение длительного времени измерять дальность ударов и знаете, что ее среднее значение составляет 205 ярдов, а стандартное отклонение — 36 ярдов. Вам предложили новую клюшку, утверждая, что она увеличит дальность удара на 10 ярдов. Вы просите каждого из последующих 81 посетителей клуба выполнить пробный удар новой клюшкой и записываете его дальность удара. Оказалось, что средняя дальность удара новой клюшкой составляет 215 ярдов. Какова вероятность того, что разница в 10 ярдов (215 – 205) обусловлена исключительно ошибкой выборки? Или по-другому: какова вероятность того, что при более масштабном тестировании новая клюшка не продемонстрирует увеличение дальности удара по сравнению с имеющимся долговременным средним показателем 205 ярдов?

Мы можем проверить это, сформировав z-значение. Стандартная ошибка среднего:

Нам нужно найти вероятность того, что среднее по выборке будет отстоять от среднего по генеральной совокупности на 2,5σ. Если вероятность будет маленькой, значит отличия обусловлены не случайностью, а качеством новой клюшки. В Excel для определения вероятности z-значения нет готовой функции. Однако можно использовать формулу =1-НОРМ.СТ.РАСП(z-значение;ИСТИНА), где функция НОРМ.СТ.РАСП() возвращает площадь под нормальной кривой слева от z-значения (рис. 2).

Рис. 2. Функция НОРМ.СТ.РАСП() возвращает площадь под кривой слева от z-значения; чтобы увеличить изображение кликните на нем правой кнопкой мыши и выберите Открыть картинку в новой вкладке

Второй аргумент функции НОРМ.СТ.РАСП() может принимать два значения: ИСТИНА – функция возвращает площадь области под кривой слева от точки, заданной первым аргументом; ЛОЖЬ – функция возвращает высоту кривой в точке, заданной первым аргументом.

Если среднее значение (μ) и стандартное отклонение (σ) генеральной совокупности не известны, используется t-значение (подробнее см. ). Структуры z- и t-значения отличаются тем, что для нахождения t-значения используется стандартное отклонение s, полученное на основе выборочных результатов, а не известное значение параметра генеральной совокупности σ. Нормальная кривая имеет единственную форму, а форма распределения t-значений варьирует в зависимости от количества степеней свободы df (от англ. degrees of freedom ) выборки, которую оно представляет. Количество степеней свободы выборки равно n – 1 , где n — размер выборки (рис. 3).

Рис. 3. Форма t-распределений, возникающих в тех случаях, когда параметр σ неизвестен, отличается от формы нормального распределения

В Excel есть две функции для t-распределения также называемого распределением Стьюдента: СТЬЮДЕНТ.РАСП() возвращает величину площади под кривой слева от заданного t-значения, а СТЬЮДЕНТ.РАСП.ПХ() – справа.

Глава 2. Корреляция

Корреляция — это мера зависимости между элементами набора упорядоченных пар. Корреляция характеризуется коэффициентам корреляции Пирсона – r. Коэффициент может принимать значения в интервале от –1,0 до +1,0.

где S x и S y – стандартные отклонения переменных Х и Y , S xy – ковариация:

В этой формуле ковариация делится на стандартные отклонения переменных Х и Y , тем самым удаляя из ковариации эффекты масштабирования, связанные с единицами измерения. В Excel используется функция КОРРЕЛ(). В названии этой функции отсутствуют уточняющие элементы Г и В, которые используются в названиях таких функций, как СТАНДОТКЛОН(), ДИСП() или КОВАРИАЦИЯ(). Хотя коэффициенте корреляции по выборке предоставляемая смещенную оценку, однако причина смещения иная, нежели в случае дисперсии или стандартного отклонения.

В зависимости от величины генерального коэффициента корреляции (часто обозначаемого греческой буквой ρ ), коэффициент корреляции r дает смещенную оценку, причем эффект смещения усиливается с уменьшением размера выборок. Тем не менее мы не пытаемся корректировать это смещение аналогично тому, как, например, делали это при вычислении стандартного отклонения, когда подставляли в соответствующую формулу не количество наблюдений, а количество степеней свободы. В действительности количество наблюдений, используемое для вычисления ковариации, не оказывает никакого влияния на величину.

Стандартный коэффициент корреляции предназначен для использования с переменными, связанными между собой линейным соотношением. Наличие нелинейности и/или ошибок в данных (выбросы) приводят к неверному расчету коэффициента корреляции. Для диагностики проблем с данными рекомендуется строить точечные диаграммы. Это единственный тип диаграмм в Excel, в котором и горизонтальная, и вертикальная оси трактуются как оси значений. Линейная же диаграмма один из столбцов определяет, как ось категорий, что искажает картину данных (рис. 4).

Рис. 4. Линии регрессии кажутся одинаковыми, однако сравните между собой их уравнения

Наблюдения, использованные для построения линейной диаграммы, располагаются вдоль горизонтальной оси эквидистантно. Надписи делений вдоль этой оси — это и есть всего лишь надписи, а не числовые значения.

Несмотря на то что корреляция часто означает наличие причинно-следственной связи, она не может служить доказательством того, что так оно и есть. Статистика не используется для демонстрации того, истинна или ложна теория. Для исключения конкурирующих объяснений результатов наблюдений ставят плановые эксперименты . Статистика же привлекается для обобщения информации, собранной в ходе таких экспериментов, и количественной оценки вероятности того, что принимаемое решение может быть неверным при имеющейся доказательной базе.

Глава 3. Простая регрессия

Если две переменные связаны между собой, так что значение коэффициента корреляции превышает, скажем, 0,5, то в этом случае можно прогнозировать (с некоторой точностью) неизвестное значение одной переменной по известному значению другой. Для получения прогнозных значений цены, исходя из данных, приведенных на рис. 5, можно использовать любой из нескольких возможных способов, но почти наверняка вы не будете использовать тот, который представлен на рис. 5. И все же вам стоит с ним ознакомиться, поскольку ни один другой способ не позволяет так же отчетливо продемонстрировать связь между корреляцией и прогнозированием, как этот. На рис. 5 в диапазоне В2:С12 представлена случайная выборка из десяти домов и приведены данные о площади каждого дома (в квадратных футах) и его продажной цене.

Рис. 5. Прогнозные значения продажной цены образуют прямую линию

Найдите средние значения, стандартные отклонения и коэффициент корреляции (диапазон А14:С18). Рассчитайте z-оценки площади (Е2:Е12). Например, ячейка ЕЗ содержит формулу: =(В3-$В$14)/$В$15. Вычислите z-оценки прогнозной цены (F2:F12). Например, ячейка F3 содержит формулу: =ЕЗ*$В$18. Переведите z-оценки в цены в долларах (Н2:Н12). В ячейке НЗ формула: =F3*$C$15+$C$14.

Обратите внимание: прогнозное значение всегда стремится сместиться в сторону среднего, равного 0. Чем ближе к нулю коэффициент корреляции, тем ближе к нулю прогнозная z-оценка. В нашем примере коэффициент корреляции между площадью и продажной ценой равен 0,67, и прогнозная цена равна 1,0*0,67, т.е. 0,67. Этому соответствует превышение значения над средним значением, равное двум третям стандартного отклонения. Если бы коэффициент корреляции был равен 0,5, то прогнозная цена составила бы 1,0*0,5, т.е. 0,5. Этому соответствует превышение значения над средним значением, равное лишь половине стандартного отклонения. Всякий раз, когда значение коэффициента корреляции отличается от идеального, т.е. больше -1,0 и меньше 1,0, оценка прогнозируемой переменной должна быть ближе к своему среднему значению, чем оценка предикторной (независимой) переменной к своему. Это явление называется регрессией к среднему, или просто регрессией.

В Excel есть несколько функций для определения коэффициентов уравнения линии регрессии (в Excel она называется линией тренда) у = kx + b . Для определения k служит функция

=НАКЛОН(известные_значения_у; известные_значения_х)

Здесь у – прогнозируемая переменная, а х – независимая переменная. Вы должны строго следовать этому порядку переменных. Наклон линии регрессии, коэффициент корреляции, стандартные отклонения переменных и ковариация тесно связаны между собой (рис. 6). Функция ОТРЕЗОК() возвращает значение, отсекаемое линией регрессии на вертикальной оси:

=ОТРЕЗОК(известные_значения_у; известные_значения_х)

Рис. 6. Соотношение между стандартными отклонениями преобразует ковариацию в коэффициент корреляции и наклон линии регрессии

Обратите внимание, что количество значений х и у, предоставляемых функциям НАКЛОН() и ОТРЕЗОК() в качестве аргументов, должно быть одинаковым.

В регрессионном анализе используется еще один важный показатель – R 2 (R-квадрат), или коэффициент детерминации. Он определяет, какой вклад в общую изменчивость данных вносит выявленная с помощью регрессии зависимость между х и у . В Excel для него есть функция КВПИРСОН(), которая принимает точно те же аргументы, что и функция КОРРЕЛ().

О двух переменных с ненулевым коэффициентом корреляции между ними говорят, что они объясняют дисперсию или имеют объясненную дисперсию. Обычно объясненная дисперсия выражается в процентах. Так R 2 = 0,81 означает, что 81% дисперсии (разброса) двух переменных является объясненной. Остальные 19% обусловлены случайными флуктуациями.

В Excel имеется функция ТЕНДЕНЦИЯ, которая упрощает вычисления. Функция ТЕНДЕНЦИЯ():

  • принимает предоставляемые вами известные значения х и известные значения у ;
  • вычисляет наклон линии регрессии и константу (отрезок);
  • возвращает прогнозные значения у , определяемые на основании применения уравнения регрессии к известным значениям х (рис. 7).

Функция ТЕНДЕНЦИЯ() является функцией массива (если вы ранее не сталкивались с такими функциями, рекомендую ).

Рис. 7. Использование функции ТЕНДЕНЦИЯ() позволяет ускорить и упростить вычисления по сравнению с использованием пары функций НАКЛОН() и ОТРЕЗОК()

Чтобы ввести функцию ТЕНДЕНЦИЯ() в виде формулы массива в ячейки G3:G12, выделите диапазон G3:G12, введите формулу ТЕНДЕНЦИЯ (СЗ:С12;ВЗ:В12), нажмите и удерживайте клавиши и только после этого нажмите клавишу . Обратите внимание, что формула заключена в фигурные скобки: < и >. Так Excel сообщает вам о том, что данная формула воспринята именно как формула массива. Не вводите сами скобки: если вы попытаетесь ввести их самостоятельно в составе формулы, Excel воспримет ваш ввод как обычную текстовую строку.

У функции ТЕНДЕНЦИЯ() есть еще два аргумента: новые_значения_х и конст . Первый позволяет построить прогноз на будущее, а второй может заставить линию регрессии пройти через начало координат (значение ИСТИНА говорит Excel использовать расчетную константу, значение ЛОЖЬ – константу = 0). Excel позволяет нарисовать регрессионную прямую на графике так, чтобы она проходила через начало координат. Начните с построения точечной диаграммы, после чего щелкните правой кнопкой мыши на одном из маркеров ряда данных. Выберите в открывшемся контекстном меню пункт Добавить линию тренда ; выберите вариант Линейная ; при необходимости прокрутите панель вниз, установите флажок Настроить пересечение ; убедитесь, что в связанном с ним текстовом поле задано значение 0,0.

Если у вас есть три переменных, и вы хотите определить корреляцию между двумя из них, исключив влияние третьей, можно использовать частную корреляцию . Предположим, вас интересует связь между процентной долей жителей города, закончивших колледж, и количеством книг в городских библиотеках. Вы собрали данные по 50 городам, но… Проблема в том, что оба этих параметра могут зависеть от благосостояния жителей того или иного города. Разумеется, очень трудно подобрать другие 50 городов, характеризующихся в точности одинаковым уровнем благосостояния жителей.

Применяя статистические методы для исключения влияния, оказываемого фактором благосостояния как на финансовую поддержку библиотек, так и на доступность обучения в колледже, вы могли бы получить более точную количественную оценку степени зависимости между интересующими вас переменными, а именно: количеством книг и количеством выпускников. Такая условная корреляция между двумя переменными, когда значения других переменных фиксированы, и называется частной корреляцией. Один из способов ее расчета заключается в использовании уравнения:

Где r CB . W — коэффициент корреляции между переменными Колледж (College) и Книги (Books) при исключенном влиянии (фиксированном значении) переменной Благосостояние (Wealth); r CB — коэффициент корреляции между переменными Колледж и Книги; r CW — коэффициент корреляции между переменными Колледж и Благосостояние; r BW — коэффициент корреляции между переменными Книги и Благосостояние.

С другой стороны, частную корреляцию можно рассчитать на основе анализа остатков, т.е. разностей между прогнозными значениями и связанными с ними результатами фактических наблюдений (оба метода представлены на рис. 8).

Рис. 8. Частная корреляция, как корреляция остатков

Для упрощения подсчета матрицы коэффициентов корреляции (В16:Е19) используйте пакет анализа Excel (меню Данные –> Анализ –> Анализ данных ). По умолчанию этот пакет в Excel не активен. Для его установки пройдите по меню Файл –> Параметры –> Надстройки . Внизу открывшегося окна Параметры Excel найдите поле Управление , выберите Надстройки Excel , кликните Перейти . Поставьте галочку напротив надстройки Пакет анализа . Кликните Анализ данных , выберите опцию Корреляция . В качестве входного интервала укажите $B$2:$D$13, поставьте галочку Метки в первой строке , в качестве выходного интервала укажите $B$16:$E$19.

Еще одна возможность – определить получастную корреляцию. Например, вы исследуете влияние роста и возраста на вес. Таким образом, у вас две предикторные переменные – рост и возраст, и одна прогнозируемая переменная – вес. Вы хотите исключить влияние одной предикторной переменной на другую, но не на прогнозную переменную:

где Н – Рост (Height), W– Вес (Weight), А – Возраст (Age); в индексе получастного коэффициента корреляции используются круглые скобки, с помощью которых указывается, влияние какой переменной устраняется и из какой именно переменной. В данном случае обозначение W(Н.А) указывает на то, что влияние переменной Возраст удаляется из переменной Рост, но не из переменной Вес.

Может создаться впечатление, что обсуждаемый вопрос не имеет существенного значения. Ведь важнее всего то, насколько точно работает общее уравнение регрессии, тогда как проблема относительных вкладов отдельных переменных в суммарную объясненную дисперсию представляется второстепенной. Однако это далеко не так. Как только вы начинаете задумываться над тем, стоит ли вообще использовать какую-то переменную в уравнении множественной регрессии, проблема становится важной. Она может влиять на оценку правильности выбора модели для анализа.

Глава 4. Функция ЛИНЕЙН()

Функция ЛИНЕЙН() возвращает 10 статистик регрессионного анализа. Функция ЛИНЕЙН() является функцией массива. Для ее ввода выделите диапазон, содержащий пять строк и два столбца, напечатайте формулу, и нажмите (рис. 9):

Рис. 9. Функция ЛИНЕЙН(): а) выделите диапазон D2:E6, б) введите формулу, как показано в строке формул, в) нажмите

Функция ЛИНЕЙН() возвращает:

  • коэффициент регрессии (или наклон, ячейка D2);
  • отрезок (или константа, ячейка Е3);
  • стандартные ошибки коэффициента регрессии и константы (диапазон D3:E3);
  • коэффициент детерминации R 2 для регрессии (ячейка D4);
  • стандартная ошибка оценки (ячейка Е4);
  • F-критерий для полной регрессии (ячейка D5);
  • количество степеней свободы для остаточной суммы квадратов (ячейка Е5);
  • регрессионная сумма квадратов (ячейка D6);
  • остаточная сумма квадратов (ячейка Е6).

Рассмотрим каждую из этих статистик и их взаимодействие.

Стандартная ошибка в нашем случае – это стандартное отклонение, вычисляемое для ошибок выборки. Т.е., это ситуация, когда генеральная совокупность имеет одну статистику, а выборка – другую. Разделив коэффициент регрессии на стандартную ошибку, вы получите значение 2,092/0,818 = 2,559. Иными словами, коэффициент регрессии, равный 2,092, отстоит от нуля на две с половиной стандартные ошибки.

Если коэффициент регрессии равен нулю, то наилучшей оценкой прогнозируемой переменной является ее среднее значение. Две с половиной стандартные ошибки — это довольно большая величина, и вы с уверенностью можете полагать, что коэффициент регрессии для генеральной совокупности имеет ненулевое значение.

Можно определить вероятность получения выборочного коэффициента регрессии 2,092, если его фактическое значение в генеральной совокупности равно 0,0 с помощью функции

СТЬЮДЕНТ.РАСП.ПХ(t-критерий = 2,559; количество степеней свободы =18)

В общем количество степеней свободы = n – k – 1, где n — количество наблюдений, а k — количество предикторных переменных.

Эта формула возвращает значение 0,00987 или, округленно, 1%. Оно сообщает нам следующее: если коэффициент регрессии для генеральной совокупности равен 0%, то вероятность получения выборки из 20 человек, для которой расчетное значение коэффициента регрессии равно 2,092, составляет скромный 1%.

F-критерий (ячейка D5 на рис. 9) выполняет те же функции по отношению к полной регрессии, что и t-критерий по отношению к коэффициенту простой парной регрессии. F-критерий используется для проверки того, действительно ли коэффициент детерминации R 2 для регрессии имеет достаточно большую величину, позволяющую отбросить гипотезу о том, что в генеральной совокупности он имеет значение 0,0, которое указывает на отсутствие дисперсии, объясняемой предикторной и прогнозируемой переменной. При наличии только одной предикторной переменной F-критерий в точности равен квадрату t-критерия.

До сих пор мы рассматривали интервальные переменные. Если же у вас переменные, которые могут принимать несколько значений, представляющих собой простые имена, например, Мужчина и Женщина или Пресмыкающееся, Земноводное и Рыба, представьте их в виде числового кода. Такие переменные называются номинальными.

Статистика R 2 дает количественную оценку доли объясненной дисперсии.

Стандартная ошибка оценки. На рис. 4.9 представлены прогнозные значения переменной Вес, полученные на основании ее связи с переменной Рост. В диапазоне Е2:Е21 содержатся значения остатков для переменной Вес. Точнее эти остатки называть ошибками — отсюда и следует термин стандартная ошибка оценки.

Рис. 10. Как R 2 , так и стандартная ошибка оценки выражают точность прогнозов, получаемых с помощью регрессии

Чем меньше стандартная ошибка оценки, тем точнее уравнение регрессии и тем более близкого совпадения любого прогноза, полученного с помощью уравнения, с фактическим наблюдением вы ожидаете. Стандартная ошибка оценки предоставляет способ количественной оценки этих ожиданий. Вес 95% людей, обладающих неким ростом, будет находиться в диапазоне:

(рост * 2,092 – 3,591) ± 2,092*21,118

F-статистика – это отношение межгрупповой дисперсии к внутригрупповой дисперсии. Это название было введено статистиком Джорджем Снедекором в честь сэра , разработавшего в начале XX столетия дисперсионный анализ (ANOVA, Analysis of Variance).

Коэффициент детерминации R 2 выражает долю общей суммы квадратов, связанную с регрессией. Величина (1 – R 2) выражает долю общей суммы квадратов, связанную с остатками — ошибками прогнозирования. F-критерий можно получить с использованием функции ЛИНЕЙН (ячейка F5 на рис. 11), с использованием сумм квадратов (диапазон G10:J11), с использованием долей дисперсии (диапазон G14:J15). Формулы можно изучить в прилагаемом файле Excel.

Рис. 11. Расчет F-критерия

При использовании номинальных переменных используется фиктивное кодирование (рис. 12). Для кодирования значений удобно использовать значения 0 и 1. Вероятность F рассчитывается с помощью функции:

Здесь функция F.РАСП.ПХ() возвращает вероятность получения F-критерия, подчиняющегося центральному F-распределению (рис. 13) для двух наборов данных с количествами степеней свободы, приведенными в ячейках I2 и I3, значение которого совпадает со значением, приведенным в ячейке К2.

Рис. 12. Регрессионный анализ с использованием фиктивных переменных

Рис. 13. Центральное F-распределение при λ = 0

Глава 5. Множественная регрессия

Переходя от простой парной регрессии с одной предикторной переменной к множественной регрессии, вы добавляете одну или несколько предикторных переменных. Сохраняйте значения предикторных переменных в смежных столбцах, например, в столбцах А и В в случае двух предикторов или А, В и С в случае трех предикторов. Прежде чем вводить формулу, включающую функцию ЛИНЕЙН(), выберите пять строк и столько столбцов, сколько имеется предикторных переменных, плюс еще один для константы. В случае регрессии с двумя предикторными переменными можно использовать следующую структуру:

ЛИНЕЙН(А2: А41; В2: С41;;ИСТИНА)

Точно так же в случае трех переменных:

Предположим, вы хотите изучить возможное влияние возраста и диеты на содержание ЛПНП — липопротеинов низкой плотности, которые считаются ответственными за образование атеросклеротических бляшек, служащих причиной атеротромбоза (рис. 14).

Рис. 14. Множественная регрессия

R 2 множественной регрессии (отражаемый в ячейке F13), больше, чем R 2 любой простой регрессии (Е4, Н4). В множественной регрессии одновременно используются несколько предикторных переменных. При этом R 2 почти всегда увеличивается.

Для любого простого линейного уравнения регрессии с одной предикторной переменной между прогнозными значениями и значениями предикторной переменной всегда будет наблюдаться идеальная корреляция, поскольку в таком уравнении значения предиктора умножаются на одну константу и к каждому произведению прибавляется другая константа. Этот эффект не сохраняется во множественной регрессии.

Отображение результатов, возвращаемых функцией ЛИНЕЙН() для множественной регрессии (рис. 15). Коэффициенты регрессии выводятся в составе результатов, возвращаемых функцией ЛИНЕЙН() в порядке обратном расположению переменных (G–H–I соответствует С–В–А).

Рис. 15. Коэффициенты и их стандартные ошибки отображаются в обратном порядке их следования на рабочем листе

Принципы и процедуры, используемые в регрессионном анализе с одной предикторной переменной, легко адаптируются для учета нескольких предикторных переменных. Оказывается, что многое в этой адаптации зависит от устранения влияния предикторных переменных друг на друга. Последнее связано с частной и получастной корреляциями (рис. 16).

Рис. 16. Множественная регрессия может быть выражена через парную регрессию остатков (формулы см. в Excel-файле)

В Excel, имеются функции, предоставляющие информацию о t- и F-распределениях. Функции, имена которых включают часть РАСП, такие как СТЬЮДЕНТ.РАСП() и F.РАСП(), принимают t- или F-критерий в качестве аргумента и возвращают вероятность наблюдения указанного значения. Функции, имена которых включают часть ОБР, такие как СТЬЮДЕНТ.ОБР() и F.ОБР(), принимают значение вероятности в качестве аргумента и возвращают значение критерия, соответствующее указанной вероятности.

Поскольку мы ищем критические значения t-распределения, которые отсекают края его хвостовых областей, мы передаем 5% в качестве аргумента одной из функций СТЬЮДЕНТ.ОБР(), которая возвращает значение, соответствующее этой вероятности (рис. 17, 18).

Рис. 17. Двусторонний t-тест

Рис. 18. Односторонний t-тест

Устанавливая правило принятия решений в случае однохвостовой альфа-области, вы увеличиваете статистическую мощность теста. Если, приступая к эксперименту, вы уверены в том, что у вас есть все основания ожидать получения положительного (или отрицательного) коэффициента регрессии, то вам следует выполнить однохвостовой тест. В этом случае вероятность того, что вы принимаете правильное решение, отвергая гипотезу о нулевом коэффициенте регрессии в генеральной совокупности, будет выше.

Читайте также:  Пример построения финансовой модели предприятия в Excel

Статистики предпочитают использовать термин направленный тест вместо термина однохвостовой тест и термин ненаправленный тест вместо термина двуххвостовой тест . Термины направленный и ненаправленный предпочтительнее, поскольку делают акцент на типе гипотезы, а не на природе хвостов распределения.

Подход к оценке влияния предикторов, основанный на сравнении моделей. На рис. 19 представлены результаты регрессионного анализа, в котором тестируется вклад переменной Диета в уравнение регрессии.

Рис. 19. Сравнение двух моделей путем проверки различий в их результатах

Результаты функции ЛИНЕЙН() (диапазон Н2:К6) имеют отношение к тому, что я называю полной моделью, в которой выполняется регрессия переменной ЛПНП по переменным Диета, Возраст и ЛПВП. В диапазоне Н9:J1З представлены расчеты без учета предикторной переменной Диета. Я называю это ограниченной моделью. В полной модели 49,2% дисперсии зависимой переменной ЛПНП объясняется предикторными переменными. В ограниченной модели лишь 30,8% ЛПНП объясняется переменными Возраст и ЛПВП. Потеря R 2 , обусловленная исключением переменной Диета из модели, составляет 0,183. В диапазоне G15:L17 сделаны расчеты, которые показывают, что лишь с вероятностью 0,0288 влияние переменной Диета является случайным. В остальных 97,1% Диета оказывает влияние на ЛПНП.

Глава 6. Допущения и предостережения в отношении регрессионного анализа

Термин «допущение» не определен достаточно строго, а способ его использования предполагает, что если допущение не соблюдается, то результаты всего анализа являются по меньшей мере сомнительными или, возможно, не имеющими силы. На самом деле это не так, хотя, безусловно, существуют случаи, когда нарушение допущения в корне меняет картину. Основные допущения: а) остатки переменной Y нормально распределены в любой точке X вдоль линии регрессии; б) значения Y находятся в линейной зависимости от значений X; в) дисперсия остатков примерно одинакова в каждой точке Х; г) между остатками отсутствует зависимость.

Если допущения не играют существенной роли, статистики говорят о робастности анализа по отношению к нарушению допущения. В частности, когда вы используете регрессию для тестирования различий между групповыми средними, допущение о том, что значения Y — а значит, и остатки — нормально распределены, не играет существенной роли: тесты робастны по отношению к нарушению допущения о нормальности. При этом важно анализировать данные с помощью диаграмм. Например, включенных в надстройку Анализ данных инструмент Регрессия .

Если данные не соответствуют допущениям линейной регрессии, в вашем распоряжении имеются другие подходы, отличные от линейного. Один из них – логистическая регрессия (рис. 20). Вблизи верхнего и нижнего предельных значений предикторной переменной линейная регрессия приводит к нереалистичным прогнозам.

Рис. 20. Логистическая регрессия

На рис. 6.8 отображены результаты двух методов анализа данных, направленного на исследование связи между ежегодным доходом и вероятностью покупки дома. Очевидно, вероятность совершения покупки будет увеличиваться с увеличением дохода. Диаграммы упрощают выявление различий между результатами, прогнозирующими вероятность покупки дома посредством линейной регрессии, и результатами, которые вы могли бы получить, используя другой подход.

На языке статистиков отбрасывание нулевой гипотезы, когда в действительности она является истинной, называется ошибкой I рода.

В надстройке Анализ данных предлагается удобный инструмент для генерации случайных чисел, предоставляющий пользователю возможность задать желаемую форму распределения (например, Нормальное, Биномиальное или Пуассона), а также среднее значение и стандартное отклонение.

Различия между функциями семейства СТЬЮДЕНТ.РАСП(). Начиная с версии Excel 2010 доступны три разные формы функции, возвращающей долю распределения слева и/или справа от заданного значения t-критерия. Функция СТЬЮДЕНТ.РАСП() возвращает долю площади под кривой распределения слева от указанного вами значения t-критерия. Предположим, у вас имеется 36 наблюдений, и поэтому количество степеней свободы для анализа равно 34, а значение t-критерия = 1,69. В этом случае формула

возвращает значение 0,05, или 5% (рис. 21). Третий аргумент функции СТЬЮДЕНТ.РАСП() может иметь значение ИСТИНА или ЛОЖЬ. Если он задан равным ИСТИНА, функция возвращает кумулятивную площадь под кривой слева от заданного t-критерия, выраженную в виде доли. Если же он равен ЛОЖЬ, функция возвращает относительную высоту кривой в точке, соответствующей t-критерию. Другие версии функции СТЬЮДЕНТ.РАСП() — СТЬЮДЕНТ.РАСП.ПХ() и СТЬЮДЕНТ.РАСП.2Х() — принимают в качестве аргументов только значение t-критерия и количество степеней свободы и не требуют задания третьего аргумента.

Рис. 21. Более темная затененная область в левом хвосте распределения соответствует доле площади под кривой слева от большого положительного значения t-критерия

Чтобы определить площадь справа от t-критерия используйте одну из формул:

1 — СТЫОДЕНТ.РАСП (1, 69;34;ИСТИНА)

Вся площадь под кривой должна составлять 100%, поэтому вычитание из 1 доли площади слева от значения t-критерия, которую возвращает функция, дает долю площади, располагающейся справа от значения t-критерия. Возможно, вам покажется более предпочтительным вариант непосредственного получения интересующей вас доли площади с помощью функции СТЬЮДЕНТ.РАСП.ПХ(), где ПХ означает правый хвост распределения (рис. 22).

Рис. 22. 5%-ная альфа область для направленного теста

Использование функций СТЬЮДЕНТ.РАСП() или СТЬЮДЕНТ.РАСП.ПХ () подразумевает, что вы выбрали направленную рабочую гипотезу. Направленная рабочая гипотеза в сочетании с установкой значения альфа на уровне 5% означает, что вы помещаете все 5% в правый хвост распределениями. Вы должны будете отвергнуть нулевую гипотезу лишь в том случае, если вероятность полученного вами значения t-критерия составит 5% и менее. Направленные гипотезы обычно приводят к более чувствительным статистическим тестам (эту большую чувствительность также называют большей статистической мощностью).

При ненаправленном тесте значение альфа остается на том же уровне 5%, но распределение будет иным. Поскольку вы должны допускать два исхода вероятность ложноположительного результата должна быть распределена между двумя хвостами распределения. Общепринято распределять эту вероятность поровну (рис. 23).

Используя то же самое полученное значение t-критерия и то же количество степеней свободы, что и в предыдущем примере, воспользуйтесь формулой

Без каких-либо особых на то причин функция СТЬЮДЕНТ.РАСП.2Х() возвращает код ошибки #ЧИСЛО!, если в качестве первого аргумента ей предоставляется отрицательное значение t-критерия.

Если выборки содержат разное число данных, воспользуйтесь двухвыборочным t-тестом с различными дисперсиями, включенным в пакет Анализ данных .

Глава 7. Использование регрессии для тестирования различий между групповыми средними

Переменные, которые ранее фигурировали под названием прогнозируемых переменных, в этой главе будут называться результативными переменными, а вместо термина предикторные переменные будет использоваться термин факторные переменные.

Простейшим из подходов к кодированию номинальной переменной является фиктивное кодирование (рис. 24).

Рис. 24. Регрессионный анализ на основе фиктивного кодирования

При использовании фиктивного кодирования любого рода следует придерживаться правил:

  • Количество столбцов, резервируемых для новых данных, должно быть равным количеству уровней фактора минус
  • Каждый вектор представляет один уровень фактора.
  • Субъекты одного из уровней, которым часто является контрольная группа, получают код 0 во всех векторах.

Формула в ячейках F2:H6 =ЛИНЕЙН(A2:A22;C2:D22;;ИСТИНА) возвращает регрессионные статистики. Для сравнения на рис. 24 отображены результаты традиционного дисперсионного анализа, возвращаемого инструментом Однофакторный дисперсионный анализ надстройки Анализ данных .

Кодирование эффектов. В другом типе кодирования, получившем название кодирование эффектов, среднее каждой группы сравнивается со средним групповых средних. Этот аспект кодирования эффектов обусловлен использованием значения -1 вместо 0 в качестве кода для группы, которая получает один и тот же код во всех кодовых векторах (рис. 25).

Рис. 25. Кодирование эффектов

Когда используется фиктивное кодирование, значение константы, возвращаемое функцией ЛИНЕЙН(), совпадает со средним группы, которой во всех векторах назначены нулевые коды (обычно это контрольная группа). В случае кодирования эффектов константа равна общему среднему (ячейка J2).

Общая линейная модель — полезный способ концептуализации компонентов значения результирующей переменной:

Y ij = μ + α j + ε ij

Использование в этой формуле греческих букв вместо латинских подчеркивает тот факт, что она относится к генеральной совокупности, из которой извлекаются выборки, но ее можно переписать в виде, указывающем на то, что она относится к выборкам, извлекаемым изданной генеральной совокупности:

Y ij = Y̅ + a j + e ij

Идея состоит в том, что каждое наблюдение Y ij можно рассматривать как сумму следующих трех компонентов: общее среднее, μ; эффект обработки j, а j ; величина e ij , которая представляет отклонение индивидуального количественного показателя Y ij от комбинированного значения общего среднего и эффекта j-й обработки (рис. 26). Целью уравнения регрессии является минимизация суммы квадратов остатков.

Рис. 26. Наблюдения, разложенные на компоненты общей линейной модели

Факторный анализ. Если исследуется связь между результативной переменной и одновременно двумя или более факторами, то в этом случае говорят об использовании факторного анализа. Добавление одного или нескольких факторов в однофакторный дисперсионный анализ может увеличивать статистическую мощность. В однофакторном дисперсионном анализе вариация результативной переменной, которая не может быть приписана фактору, включается в остаточный средний квадрат. Но вполне может быть так, что эта вариация с вязана с другим фактором. Тогда эта вариация может быть удалена из среднеквадратической ошибки, уменьшение которой приводит к увеличению значений F-критерия, а значит, к увеличению статистической мощности теста. Надстройка Анализ данных включает инструмент, обеспечивающий обработку двух факторов одновременно (рис. 27).

Рис. 27. Инструмент Двухфакторный дисперсионный анализ с повторениями Пакета анализа

Использованный на этом рисунке инструмент дисперсионного анализа, полезен тем, что он возвращает среднее и дисперсию результативной переменной, а также значение счетчика для каждой группы, включенной в план. В таблице Дисперсионный анализ отображаются два параметра, отсутствующие в выходной информации однофакторной версии инструмента дисперсионного анализа. Обратите внимание на источники вариации Выборка и Столбцы в строках 27 и 28. Источник вариации Столбцы относится к полу. Источник вариации Выборка относится к любой переменной, значения которой занимают различные строки. На рис. 27 значения для группы КурсЛеч1 находятся в строках 2-6, группы КурсЛеч2 — в строках 7-11, а группы КурсЛечЗ — в строках 12-16.

Главный момент заключается в том, что оба фактора, Пол (подпись Столбцы в ячейке Е28) и Лечение (подпись Выборка в ячейке Е27), включены в таблицу Дисперсионный анализ как источники вариации. Средние для мужчин отличаются от средних для женщин, и это создает источник вариации. Средние для трех видов лечения также различаются — вот вам еще один источник вариации. Существует также третий источник — Взаимодействие, который относится к объединенному эффекту переменных Пол и Лечение.

Глава 8. Ковариационный анализ

Ковариационный анализ, или ANCOVA (Analysis of Covariation) уменьшает смещения и увеличивает статистическую мощность. Напомню, что одним из способов оценки надежности регрессионного уравнения являются F-тесты:

F = MS Regression /MS Residual

где MS (Mean Square) — средний квадрат, а индексы Regression и Residual указывают на регрессионную и остаточную компоненты соответственно. Расчет MS Residual выполняется по формуле:

MS Residual = SS Residual / df Residual

где SS (Sum of Squares) — сумма квадратов, a df – количество степеней свободы. Когда вы добавляете ковариацию в уравнение регрессии, некоторая доля общей суммы квадратов включается не в SS ResiduaI , а в SS Regression . Это приводит к уменьшению SS Residua l , а значит, и MS Residual . Чем меньше MS Residual , тем больше F-критерий и тем вероятнее, что вы отвергнете нулевую гипотезу об отсутствии различий между средними. В результате вы перераспределяете изменчивость результативной переменной. В ANOVA, когда ковариация не учитывается, изменчивость переходит в ошибку. Но в ANCOVA часть изменчивости, ранее относившаяся к ошибке, назначается ковариате и становится частью SS Regression .

Рассмотрим пример, в котором один и тот же набор данных анализируется сначала с помощью ANOVA, а затем с помощью ANCOVA (рис. 28).

Рис. 28. Анализ ANOVA указывает на то, что результаты, полученные с помощью уравнения регрессии, ненадежны

В исследовании сравниваются относительные эффекты физических упражнений, развивающих мышечную силу, и когнитивных упражнений (разгадывание кроссвордов), активизирующих мозговую деятельность. Субъекты были случайным образом распределены по двум группам, чтобы в начале эксперимента обе группы находились в одинаковых условиях. По прошествии трех месяцев были измерены когнитивные характеристики субъектов. Результаты этих измерений приведены в столбце В.

В диапазоне А2:С21 размещены исходные данные, передаваемые функции ЛИНЕЙН() для выполнения анализа с использованием кодирования эффектов. Результаты работы функции ЛИНЕЙН() приведены в диапазоне E2:F6, где в ячейке Е2 отображается коэффициент регрессии, связанный с вектором воздействия. В ячейке Е8 содержится t-критерий = 0,93, а в ячейке Е9 тестируется надежность этого t-критерия. Содержащееся в ячейке Е9 значение говорит о том, что вероятность встретить различие между групповыми средними, наблюдаемое в данном эксперименте, составляет 36%, если в генеральной совокупности групповые средние равны. Лишь немногие признают этот результат статистически значимым.

На рис. 29 показано, что произойдет при добавлении ковариаты в анализ. В данном случае я добавил в набор данных возраст каждого субъекта. Коэффициент детерминации R 2 для уравнения регрессии, в котором используется ковариата, равен 0,80 (ячейка F4). Значение R 2 в диапазоне F15:G19, в котором я воспроизвел результаты ANOVA, полученные без использования ковариаты, равно всего лишь 0,05 (ячейка F17). Следовательно, уравнение регрессии, включающее ковариату, предсказывает значения переменной Когнитивный показатель намного точнее, чем с использованием только вектора Воздействие. Для ANCOVA вероятность случайного получения значения F-критерия, отображаемого в ячейке F5, равна менее чем 0,01%.

Рис. 29. ANCOVA возвращает совершенно иную картину

По территориям региона приводятся данные за 200Х г.

Номер региона Среднедушевой прожиточный минимум в день одного трудоспособного, руб., х Среднедневная заработная плата, руб., у
1 78 133
2 82 148
3 87 134
4 79 154
5 89 162
6 106 195
7 67 139
8 88 158
9 73 152
10 87 162
11 76 159
12 115 173

Задание:

1. Постройте поле корреляции и сформулируйте гипотезу о форме связи.

2. Рассчитайте параметры уравнения линейной регрессии

4. Дайте с помощью среднего (общего) коэффициента эластичности сравнительную оценку силы связи фактора с результатом.

7. Рассчитайте прогнозное значение результата, если прогнозное значение фактора увеличится на 10% от его среднего уровня. Определите доверительный интервал прогноза для уровня значимости .

Решение:

Решим данную задачу с помощью Excel.

1. Сопоставив имеющиеся данные х и у, например, ранжировав их в порядке возрастания фактора х, можно наблюдать наличие прямой зависимости между признаками, когда увеличение среднедушевого прожиточного минимума увеличивает среднедневную заработную плату. Исходя из этого, можно сделать предположение, что связь между признаками прямая и её можно описать уравнением прямой. Этот же вывод подтверждается и на основе графического анализа.

Чтобы построить поле корреляции можно воспользоваться ППП Excel. Введите исходные данные в последовательности: сначала х, затем у.

Выделите область ячеек, содержащую данные.

Затем выберете: Вставка / Точечная диаграмма / Точечная с маркерами как показано на рисунке 1.

Рисунок 1 Построение поля корреляции

Анализ поля корреляции показывает наличие близкой к прямолинейной зависимости, так как точки расположены практически по прямой линии.

2. Для расчёта параметров уравнения линейной регрессии
воспользуемся встроенной статистической функцией ЛИНЕЙН .

1) Откройте существующий файл, содержащий анализируемые данные;
2) Выделите область пустых ячеек 5×2 (5 строк, 2 столбца) для вывода результатов регрессионной статистики.
3) Активизируйте Мастер функций : в главном меню выберете Формулы / Вставить функцию .
4) В окне Категория выберете Статистические , в окне функция — ЛИНЕЙН . Щёлкните по кнопке ОК как показано на Рисунке 2;

Рисунок 2 Диалоговое окно «Мастер функций»

5) Заполните аргументы функции:

Известные значения у

Известные значения х

Константа — логическое значение, которое указывает на наличие или на отсутствие свободного члена в уравнении; если Константа = 1, то свободный член рассчитывается обычным образом, если Константа = 0, то свободный член равен 0;

Статистика — логическое значение, которое указывает, выводить дополнительную информацию по регрессионному анализу или нет. Если Статистика = 1, то дополнительная информация выводится, если Статистика = 0, то выводятся только оценки параметров уравнения.

Щёлкните по кнопке ОК ;

Рисунок 3 Диалоговое окно аргументов функции ЛИНЕЙН

6) В левой верхней ячейке выделенной области появится первый элемент итоговой таблицы. Чтобы раскрыть всю таблицу, нажмите на клавишу , а затем на комбинацию клавиш + + .

Дополнительная регрессионная статистика будет выводиться в порядке, указанном в следующей схеме:

Рисунок 4 Результат вычисления функции ЛИНЕЙН

Получили уровнение регрессии:

Делаем вывод: С увеличением среднедушевого прожиточного минимума на 1 руб. среднедневная заработная плата возрастает в среднем на 0,92 руб.

Означает, что 52% вариации заработной платы (у) объясняется вариацией фактора х — среднедушевого прожиточного минимума, а 48% — действием других факторов, не включённых в модель.

По вычисленному коэффициенту детерминации можно рассчитать коэффициент корреляции: .

Связь оценивается как тесная.

4. С помощью среднего (общего) коэффициента эластичности определим силу влияния фактора на результат.

Для уравнения прямой средний (общий) коэффициент эластичности определим по формуле:

Средние значения найдём, выделив область ячеек со значениями х, и выберем Формулы / Автосумма / Среднее , и то же самое произведём со значениями у.

Рисунок 5 Расчёт средних значений функции и аргумент

Таким образом, при изменении среднедушевого прожиточного минимума на 1% от своего среднего значения среднедневная заработная плата изменится в среднем на 0,51%.

С помощью инструмента анализа данных Регрессия можно получить:
— результаты регрессионной статистики,
— результаты дисперсионного анализа,
— результаты доверительных интервалов,
— остатки и графики подбора линии регрессии,
— остатки и нормальную вероятность.

Порядок действий следующий:

1) проверьте доступ к Пакету анализа . В главном меню последовательно выберите: Файл/Параметры/Надстройки .

2) В раскрывающемся списке Управление выберите пункт Надстройки Excel и нажмите кнопку Перейти.

3) В окне Надстройки установите флажок Пакет анализа , а затем нажмите кнопку ОК .

Если Пакет анализа отсутствует в списке поля Доступные надстройки , нажмите кнопку Обзор , чтобы выполнить поиск.

Если выводится сообщение о том, что пакет анализа не установлен на компьютере, нажмите кнопку Да , чтобы установить его.

4) В главном меню последовательно выберите: Данные / Анализ данных / Инструменты анализа / Регрессия , а затем нажмите кнопку ОК .

5) Заполните диалоговое окно ввода данных и параметров вывода:

Входной интервал Y — диапазон, содержащий данные результативного признака;

Входной интервал X — диапазон, содержащий данные факторного признака;

Метки — флажок, который указывает, содержит ли первая строка названия столбцов или нет;

Константа — ноль — флажок, указывающий на наличие или отсутствие свободного члена в уравнении;

Выходной интервал — достаточно указать левую верхнюю ячейку будущего диапазона;

6) Новый рабочий лист — можно задать произвольное имя нового листа.

Затем нажмите кнопку ОК .

Рисунок 6 Диалоговое окно ввода параметров инструмента Регрессия

Результаты регрессионного анализа для данных задачи представлены на рисунке 7.

Рисунок 7 Результат применения инструмента регрессия

5. Оценим с помощью средней ошибки аппроксимации качество уравнений. Воспользуемся результатами регрессионного анализа представленного на Рисунке 8.

Рисунок 8 Результат применения инструмента регрессия «Вывод остатка»

Составим новую таблицу как показано на рисунке 9. В графе С рассчитаем относительную ошибку аппроксимации по формуле:

Рисунок 9 Расчёт средней ошибки аппроксимации

Средняя ошибка аппроксимации рассчитывается по формуле:

Качество построенной модели оценивается как хорошее, так как не превышает 8 — 10%.

6. Из таблицы с регрессионной статистикой (Рисунок 4) выпишем фактическое значение F-критерия Фишера:

Поскольку при 5%-ном уровне значимости, то можно сделать вывод о значимости уравнения регрессии (связь доказана).

8. Оценку статистической значимости параметров регрессии проведём с помощью t-статистики Стьюдента и путём расчёта доверительного интервала каждого из показателей.

Выдвигаем гипотезу Н 0 о статистически незначимом отличии показателей от нуля:

.

для числа степеней свободы

На рисунке 7 имеются фактические значения t-статистики:

t-критерий для коэффициента корреляции можно рассчитать двумя способами:

где — случайная ошибка коэффициента корреляции.

Данные для расчёта возьмём из таблицы на Рисунке 7.

Фактические значения t-статистики превосходят табличные значения:

Поэтому гипотеза Н 0 отклоняется, то есть параметры регрессии и коэффициент корреляции не случайно отличаются от нуля, а статистически значимы.

Доверительный интервал для параметра a определяется как

Для параметра a 95%-ные границы как показано на рисунке 7 составили:

Доверительный интервал для коэффициента регрессии определяется как

Для коэффициента регрессии b 95%-ные границы как показано на рисунке 7 составили:

Анализ верхней и нижней границ доверительных интервалов приводит к выводу о том, что с вероятностью параметры a и b, находясь в указанных границах, не принимают нулевых значений, т.е. не являются статистически незначимыми и существенно отличны от нуля.

7. Полученные оценки уравнения регрессии позволяют использовать его для прогноза. Если прогнозное значение прожиточного минимума составит:

Тогда прогнозное значение прожиточного минимума составит:

Ошибку прогноза рассчитаем по формуле:

где

Дисперсию посчитаем также с помощью ППП Excel. Для этого:

1) Активизируйте Мастер функций : в главном меню выберете Формулы / Вставить функцию .

3) Заполните диапазон, содержащий числовые данные факторного признака. Нажмите ОК .

Рисунок 10 Расчёт дисперсии

Получили значение дисперсии

Для подсчёта остаточной дисперсии на одну степень свободы воспользуемся результатами дисперсионного анализа как показано на Рисунке 7.

Доверительные интервалы прогноза индивидуальных значений у при с вероятностью 0,95 определяются выражением:

Интервал достаточно широк, прежде всего, за счёт малого объёма наблюдений. В целом выполненный прогноз среднемесячной заработной платы оказался надёжным.

Условие задачи взято из: Практикум по эконометрике: Учеб. пособие / И.И. Елисеева, С.В. Курышева, Н.М. Гордеенко и др.; Под ред. И.И. Елисеевой. — М.: Финансы и статистика, 2003. — 192 с.: ил.

Пакет MS Excel позволяет при построении уравнения линейной регрессии большую часть работы сделать очень быстро. Важно понять, как интерпретировать полученные результаты. Для построения модели регрессии необходимо выбрать пункт Сервис\Анализ данных\Регрессия (в Excel 2007 этот режим находится в блоке Данные/Анализ данных/Регрессия). Затем полученные результаты скопировать в блок для анализа.

В Excel имеется еще более быстрый и удобный способ построить график линейной регрессии (и даже основных видов нелинейных регрессий, о чем см. далее). Это можно сделать следующим образом:

1) выделить столбцы с данными X и Y (они должны располагаться именно в таком порядке!);

2) вызвать Мастер диаграмм и выбрать в группе ТипТочечная и сразу нажать Готово ;

3) не сбрасывая выделения с диаграммы, выбрать появившейся пункт основного меню Диаграмма , в котором следует выбрать пункт Добавить линию тренда ;

4) в появившемся диалоговом окне Линия тренда во вкладке Тип выбрать Линейная ;

5) во вкладке Параметры можно активизировать переключатель Показывать уравнение на диаграмме , что позволит увидеть уравнение линейной регрессии (4.4), в котором будут вычислены коэффициенты (4.5).

6) В этой же вкладке можно активизировать переключатель Поместить на диаграмму величину достоверности аппроксимации (R^2) . Эта величина есть квадрат коэффициента корреляции (4.3) и она показывает, насколько хорошо рассчитанное уравнение описывает экспериментальную зависимость. Если R 2 близок к единице, то теоретическое уравнение регрессии хорошо описывает экспериментальную зависимость (теория хорошо согласуется с экспериментом), а если R 2 близок к нулю, то данное уравнение не пригодно для описания экспериментальной зависимости (теория не согласуется с экспериментом).

В результате выполнения описанных действий получится диаграмма с графиком регрессии и ее уравнением.

§4.3. Основные виды нелинейной регрессии

Параболическая и полиномиальная регрессии.

Параболической зависимостью величины Y от величины Х называется зависимость, выраженная квадратичной функцией (параболой 2-ого порядка):

Это уравнение называется уравнением параболической регрессии Y на Х . Параметры а , b , с называются коэффициентами параболической регрессии . Вычисление коэффициентов параболической регрессии всегда громоздко, поэтому для расчетов рекомендуется использовать компьютер.

Уравнение (4.8) параболической регрессии является частным случаем более общей регрессии, называемой полиномиальной. Полиномиальной зависимостью величины Y от величины Х называется зависимость, выраженная полиномом n -ого порядка:

где числа а i (i =0,1,…, n ) называются коэффициентами полиномиальной регрессии .

Степенная регрессия.

Степенной зависимостью величины Y от величины Х называется зависимость вида:

Это уравнение называется уравнением степенной регрессии Y на Х . Параметры а и b называются коэффициентами степенной регрессии .

ln =lna + lnx . (4.11)

Это уравнение описывает прямую на плоскости с логарифмическими координатными осями lnx и ln . Поэтому критерием применимости степенной регрессии служит требование того, чтобы точки логарифмов эмпирических данных lnx i и lnу i находились ближе всего к прямой (4.11).

Показательная регрессия.

Показательной (или экспоненциальной ) зависимостью величины Y от величины Х называется зависимость вида:

Это уравнение называется уравнением показательной (или экспоненциальной ) регрессии Y на Х . Параметры а (или k ) и b называются коэффициентами показательной (или экспоненциальной ) регрессии .

Если прологарифмировать обе части уравнения степенной регрессии, то получится уравнение

ln = lna +lnb (или ln =k·x +lnb ). (4.13)

Это уравнение описывает линейную зависимость логарифма одной величины ln от другой величины x . Поэтому критерием применимости степенной регрессии служит требование того, чтобы точки эмпирических данных одной величины x i и логарифмы другой величины lnу i находились ближе всего к прямой (4.13).

Логарифмическая регрессия.

Логарифмической зависимостью величины Y от величины Х называется зависимость вида:

=a + lnx . (4.14)

Это уравнение называется уравнением логарифмической регрессии Y на Х . Параметры а и b называются коэффициентами логарифмической регрессии .

Гиперболическая регрессия.

Гиперболической зависимостью величины Y от величины Х называется зависимость вида:

Это уравнение называется уравнением гиперболической регрессии Y на Х . Параметры а и b называются коэффициентами гиперболической регрессии и определяются методом наименьших квадратов. Применение этого метода приводит к формулам:

В формулах (4.16-4.17) суммирование проводится по индексу i от единицы до количества наблюдений n .

К сожалению, в Excel нет функции, вычисляющих коэффициенты гиперболической регрессии. В тех случаях, когда заведомо не известно, что измеряемые величины связаны обратной пропорциональностью, рекомендуется вместо уравнения гиперболической регрессии искать уравнение степенной регрессии, так в Excel имеется процедура ее нахождения. Если же между измеряемыми величинами предполагается гиперболическая зависимость, то коэффициенты ее регрессии придется вычислять с помощью вспомогательных расчетных таблиц и операций суммирования по формулам (4.16-4.17).

Пакет MS Excel позволяет при построении уравнения линейной регрессии большую часть работы сделать очень быстро. Важно понять, как интерпретировать полученные результаты.

Для работы необходима надстройка Пакет анализа , которую необходимо включить в пункте меню Сервис\Надстройки

В Excel 2007 для включения пакета анализа надо нажать перейти в блок Параметры Excel , нажав кнопку в левом верхнем углу, а затем кнопку «Параметры Excel » внизу окна:

Для построения модели регрессии необходимо выбрать пункт Сервис\Анализ данных\Регрессия . (В Excel 2007 этот режим находится в блоке Данные/Анализ данных/ Регрессия ). Появится диалоговое окно, которое нужно заполнить:

1) Входной интервал Y ¾ содержит ссылку на ячейки, которые содержат значения результативного признака y . Значения должны быть расположены в столбце;

2) Входной интервал X ¾ содержит ссылку на ячейки, которые содержат значения факторов . Значения должны быть расположены в столбцах;

3) Признак Метки ставится, если первые ячейки содержат пояснительный текст (подписи данных);

4) Уровень надежности ¾ это доверительная вероятность, которая по умолчанию считается равной 95%. Если это значение не устраивает, то нужно включить этот признак и ввести требуемое значение;

5) Признак Константа-ноль включается, если необходимо построить уравнение, в котором свободная переменная ;

6) Параметры вывода определяют, куда должны быть помещены результаты. По умолчанию строит режим Новый рабочий лист ;

7) Блок Остатки позволяет включать вывод остатков и построение их графиков.

В результате выводится информация, содержащая все необходимые сведения и сгруппированная в три блока: Регрессионная статистика , Дисперсионный анализ , Вывод остатка . Рассмотрим их подробнее.

1. Регрессионная статистика :

множественный R определяется формулой (коэффициент корреляции Пирсона );

R (коэффициент детерминации );

Нормированный R -квадрат вычисляется по формуле (используется для множественной регрессии);

Стандартная ошибка S вычисляется по формуле ;

Наблюдения ¾ это количество данных n .

2. Дисперсионный анализ , строка Регрессия :

Параметр df равен m (количество наборов факторов x );

Параметр SS определяется формулой ;

Параметр MS определяется формулой ;

Статистика F определяется формулой ;

Значимость F . Если полученное число превышает , то принимается гипотеза (нет линейной взаимосвязи), иначе принимается гипотеза (есть линейная взаимосвязь).

3. Дисперсионный анализ , строка Остаток :

Параметр df равен ;

Параметр SS определяется формулой ;

Параметр MS определяется формулой .

4. Дисперсионный анализ , строка Итого содержит сумму первых двух столбцов.

5. Дисперсионный анализ , строка Y-пересечение содержит значение коэффициента , стандартной ошибки и t -статистики .

P -значение ¾ это значение уровней значимости, соответствующее вычисленным t -статистикам. Определяется функцией СТЬЮДРАСП(t -статистика; ). Если P -значение превышает , то соответствующая переменная статистически незначима и ее можно исключить из модели.

Нижние 95% и Верхние 95% ¾ это нижние и верхние границы 95-процентных доверительных интервалов для коэффициентов теоретического уравнения линейной регрессии. Если в блоке ввода данных значение доверительной вероятности было оставлено по умолчанию, то последние два столбца будут дублировать предыдущие. Если пользователь ввел свое значение доверительной вероятности, то последние два столбца содержат значения нижней и верхней границы для указанной доверительной вероятности.

6. Дисперсионный анализ , строки содержат значения коэффициентов, стандартных ошибок, t -статистик, P -значений и доверительных интервалов для соответствующих .

7. Блок Вывод остатка содержит значения предсказанного y (в наших обозначениях это ) и остатки .

7. Векторизация и нормирование одномерных координат

Пусть значения некой характеристики элементов заданы рядом чисел . Для того, чтобы данный набор можно было сравнивать с другими характеристиками, необходимо его векторизовать и обезразмерить (нормировать).
Для векторизации находим центр (среднее) значений

и строим новый набор как разность между исходными числами и их центроидом (средним):

Получили вектор. Основной признак векторов состоит в том, что сумма их координат равна нулю. Далее нормируем вектор, — приведем сумму квадратов его координат к 1. Для выполнения данной операции нам нужно вычислить эту сумму (точнее среднее):

Теперь можно построить ССК исходного набора как совокупность собственного числа S и нормированных координат вектора:

Квадраты расстояний между точками исходного набора определяются как разности квадратов компонент собственного вектора, умноженные на собственное число. Обратим внимание на то, что собственное число S оказалось равно дисперсии исходного набора (7.3).

Итак, для любого набора чисел можно определить собственную систему координат, то есть выделить значение собственного числа (она же дисперсия) и рассчитать координаты собственного вектора путем векторизации и нормирования исходного набора чисел. Круто.

Упражнение для тех, кто любит «щупать руками». Построить ССК для набора <1, 2, 3, 4>.

Становление эконометрики как научной дисциплины представляет значительный интерес с точки зрения как определения объектов исследования, так и формирования набора методов. Сам термин «эконометрика» сформировался из двух частей: «эконо-» – от «экономика» и «-метрика» – от «измерение». Поэтому статистический анализ экономических данных называется эконометрикой, что буквально означает «наука об экономических измерениях».

Эконометрика – это наука, связанная с эмпирическим выводом экономических законов.

Статистические ряды данных

Методы систематизации, обработки и использования статистических данных, выявление закономерностей являются основой эконометрических исследований. Пусть требуется исследовать какой-нибудь признак, свойственный большой группе однородных объектов. Напомним основные понятия и характеристики статистических данных.

Возможно эта страница вам будет полезна:

Генеральной совокупностью (генеральной выборкой) называется совокупность значений признака всех объектов данного типа, а их число alt=»Решение задач по эконометрике в Excel» width=»» />объемом совокупности. При этом предполагается, что число alt=»Решение задач по эконометрике в Excel» width=»» />большое, такое, что исследование физически невозможно. Тогда из всей совокупности выбирают ограниченное число объектов и подвергают их изучению.

Решение задач по эконометрике в Excel

Выборочной совокупностью (выборкой) называется совокупность случайно отобранных объектов, а её объем обозначается .

Статистические исследования позволяют распространить выводы, сделанные на основе случайной выборки, на всю генеральную совокупность исследуемых случайных величин. Это является основой выборочного метода.

Графическое представление статистических данных

Пусть из генеральной совокупности извлекается выборка объема Решение задач по эконометрике в Excel, причем значение признака Решение задач по эконометрике в Excelнаблюдается Решение задач по эконометрике в Excelраз, где сумма Решение задач по эконометрике в Excelравна объему выборки Решение задач по эконометрике в Excel.

Решение задач по эконометрике в Excel

Статистическим распределением выборки называется перечень наблюдаемых значений и соответствующих им частот или относительных частот (частостей)

Решение задач по эконометрике в Excel

Упорядоченный в порядке возрастания или убывания ряд значений признака с соответствующими ему частотами называют вариационным рядом.

В целях наглядности строятся различные графики статистического распределения.

Полигоном частот (относительных частот) называется ломаная линия, которая соединяет точки с координатами Решение задач по эконометрике в Excelили Решение задач по эконометрике в Excel.

Для построения гистограммы частот (относительных частот) необходимо найти границы интервалов признаков. Если данные наблюдений представляют в виде рядов с равными интервалами, то их величина находится по формуле Стэрд-жесса:

Решение задач по эконометрике в Excel

Решение задач по эконометрике в Excel

где — объем выборки;

Решение задач по эконометрике в Excel

— наибольшее и наименьшее значения вариантов выборки. Гистограмма представляет собой столбчатую диаграмму.

По оси абсцисс откладываются границы интервалов так, чтобы они покрыли все значения вариационного ряда, а по оси ординат откладываются абсолютная плотность распределения Решение задач по эконометрике в Excelили относительную плотность Решение задач по эконометрике в Excel.

Аналогом функции распределения Решение задач по эконометрике в Excelдля вариационного ряда является функция накопленных частот, её обозначают Решение задач по эконометрике в Excelа график строят по следующему правилу:

по оси абсцисс откладывают значения признака, а по оси ординат — накопленные частоты или частости. Такую кривую иногда называют кумулятой: по данным интервального ряда на оси абсцисс откладывают точки, являющиеся верхними границами интервалов, а на оси ординат накопленные частоты (частости) соответствующих интервалов. Часто добавляют ещё одну точку, абсцисса которой соответствует левой границе первого интервала, а ордината равна нулю.

Числовые характеристики статистических распределений

Для описания статистических распределений обычно используют три вида характеристик:

  1. средние, или характеристики центральной тенденции;
  2. характеристики изменения вариант (рассеяния);
  3. характеристики, отражающие дополнительные особенности распределений, в частности их форму.

Все эти характеристики вычисляются по результатам наблюдений и построенных вариационных рядов.

Основным видом средних характеристик является средняя арифметическая (среднее выборочное значение), определяемая по формуле:

Решение задач по эконометрике в Excel

где Решение задач по эконометрике в Excel— значение признака в вариационном ряде (дискретном или интервальном); Решение задач по эконометрике в Excel— соответствующая ему частота;

Довольно часто в статистическом анализе применяют структурные или порядковые средние:

Решение задач по эконометрике в Excel

1) медиана Решение задач по эконометрике в Excel— значение признака, разделяющее вариационный ряд на две численно равные группы, такие, что элементы первой группы строго меньше медианы, второй строго больше её значения. Можно определить графически с помощью кумуляты, так как Решение задач по эконометрике в Excel;

Решение задач по эконометрике в Excel

2) мода — значение признака, которому соответствует большая частота.

Величины моды и медианы определяются по интерполяционным формулам, непосредственно из их определения, которые можно найти в дополнительной литературе.

Средние характеристики должны быть дополнены изменением вариации признака (рассеянием). Для этого рассчитываются квадраты отклонений вариант от среднего арифметического значения. Средний квадрат отклонений по данной выборке называется дисперсией и вычисляется по формуле:

Решение задач по эконометрике в Excel

На базе дисперсии вводятся две характеристики:

Решение задач по эконометрике в Excel

1) среднее квадратическое отклонение ;

2) коэффициент вариации, равный процентному отношению среднего квадратического отклонения к значению средней арифметической исследуемой случайной величины, помогает решить вопрос об однородности выборки:

Решение задач по эконометрике в Excel

Величина о является чаще всего применяемой характеристикой рассеяния. Для характеристики формы распределения вводятся моменты к-того порядка, впервые предложенные Чебышсвым П. Л.:

Решение задач по эконометрике в Excel

которые называются центральными моментами к-того порядка. Чем больше моментов для данного признака вычислено, тем точнее можно описать свойства распределения. Однако с ростом К растет влияние случайных погрешностей, поэтому на практике используются моменты до четвертого порядка.

Центральный момент третьего порядка называется асимметрией Решение задач по эконометрике в Excelраспределения, а четвертого — эксцесс Решение задач по эконометрике в Excel.

Инструмент анализа описательная статистика и гистограмма в Excel

Наиболее полный анализ статистических данных позволяет выполнить пакет Анализ данных из меню Сервис. Если команда Анализ данных отсутствует в меню Сервис, выберите Надстройки и в появившемся списке отметьте Analysis ToolPak (Пакет анализа). В случае отсутствия этого пункта в Надстройках, вам придется установить его вручную с помощью Microsoft Excel Setup (меню Сервис > Надстройки > подключите Пакет Анализа).

При выполнении этой лабораторной работы будут использоваться инструменты Описательная статистика и Гистограмма из Анализа данных. Надо сказать, что в Excel есть набор встроенных статистических функций, которыми можно пользоваться, если нет необходимости во всех характеристиках исследуемых данных. Для вызова нужной функции необходимо выполнить действия: из меню Вставка и выбрать команду Функция и перейти к категории Статистические.

Возможно эта страница вам будет полезна:

Пример с решением №1.1.

При обследовании 50 семей получены данные о количестве детей, которые имеют БИНОМРАСЩ) с числом испытаний равным 10 и вероятностью успеха 0,3 (сгенерировать с помощью пакета Анализа данных). Определите средний размер семьи. Охарактеризуйте колеблемость размера семьи с помощью показателя вариации. Постройте гистограмму и функцию распределения.

Данные для решения примера задают изначально в виде таблиц и их надо поместить на лист Excel; или можно воспользоваться инструментом Анализа данных Генерация случайных чисел.

Генерация случайных чисел позволяет быстро получить нужное количество значений одной или нескольких вариант, имеющих одно из распределений: Равномерное, Нормальное, Бернулли, Биномиальное, Пуассона и другие. Надо помнить, что каждое распределение имеет свои параметры, которые задаются пользователем. Достоверность полученных выводов в этом случае мала.

  1. В меню Сервис выберите Анализ данных, а затем выделите инструмент анализа Генерация случайных чисел (найти его можно с помощью линейки прокрутки). Выделите в диалоговом окне нужный инструмент и нажмите ОК (рис. 1.1).
  2. Заполните поля диалогового окна так же как на рис. 1.2 и нажмите ОК. Результатом является набор из пятидесяти чисел, которые располагаются в столбце В рис 1.3.
  3. Примените инструмент Описательная статистика для поиска числовых характеристик выборочных данных, расположенных в диапазоне В2:В51. Для этого выберите инструмент анализа Описательная статистика в диалоговом окне Анализ данных рис. 1.1. В одноименном диалоговом окне надо указать: входной интервал (В2:В51), ячейку левого верхнего угла для вывода итогов D1, обязательно включите опцию Итоговая Статистика. Результат применения инструмента Описательная статистика показан на рис. 1.3. в диапазоне D1:Е18.

Значения в диапазоне Е2: Е18 не обновляются в случае изменения исходных данных В2:В51.

Решение задач по эконометрике в Excel

Решение задач по эконометрике в Excel

В столбце рис. 1.3. приводятся встроенные функции Excel, которые позволяют получить те же результаты, что и при использовании инструмента Описательная статистика. Функции листа следует использовать, если необходим автоматический перерасчет значений числовых характеристик выборки или нет необходимости во всех значениях Описательной статистики.

Решение задач по эконометрике в Excel

Решение задач по эконометрике в Excel

Построение гистограммы и функции распределения можно выполнить, выбрав инструмент, Гистограмма (рис. 1.1). Перед использованием этого инструмента надо решить вопрос об интервале разбиения ( — Excel называет это значение карманом, а список всех границ интервалов — интервал карманов). Вы можете найти его сами по формуле Стэрджесса или разрешить Excel разбить на равные интервалы (тогда заполнять поле Интервал карманов не надо). Включите опцию вывод графика.

Решение задач по эконометрике в Excel

Описательная статистика содержит три результата средней характеристики исследования числа детей в пятидесяти семьях: Среднее (3,34), Моду (3) и Медиану (3). Найдем значение коэффициента вариации по формуле (1.4):

Решение задач по эконометрике в Excel

Так как 43% > 35%, можно сделать вывод, что изучаемая совокупность семей является неоднородной, чем и объясняется высокая колеблемость количества детей в семьях. В виду неоднородности семей, попавших в выборку, можно в качестве среднего использовать моду или медиану

Стандартное отклонение (1,44) — наиболее широко используемая характеристика изменения данных — измеряется в тех же единицах, что и исходные данные.

Стандартная ошибка является характеристикой достоверности среднего выборочного значения и используется в статистических исследованиях (0,20).

Эксцесс и Асснметрнн позволяют сделать вывод о незначительных отклонениях гистограммы частостей от нормально распределенной случайной величины, характеризующей количество детей в семьях с средним равным 3,34 и средним квад-ратическим отклонением 1,44.

Напомним, что эталоном этих величин являются нормальное распределение (рис. 1.5), для которого Ассиметрия равна нулю, а центральный момент четвертого порядка (1.5) равен трем.

Ассиметрия имеет отрицательное значение. Это означает, что гистограмма не симметрична по отношению к среднему значению выборки и имеет скос вправо, то есть количество семей имеющих менее трех детей больше, чем семей количество детей в которых больше трех.

Решение задач по эконометрике в Excel

Эксцесс тоже имеет отрицательное значение. То есть значение гистограммы в точке ниже аналогичного нормального распределения.

Математическая статистика статистические оценки

Имеется случайная величина Решение задач по эконометрике в Excel, закон распределения которой известен и зависит от параметров Решение задач по эконометрике в Excel. Требуется на основании наблюдаемых данных оценить значения этих параметров.

Решение задач по эконометрике в Excel

Числовые характеристики генеральной совокупности, как правило, неизвестны. Их называют параметрами генеральной совокупности (среднее, дисперсия, среднее квадратическое отклонение, доля признака генеральной совокупности объема ).

Из генеральной совокупности извлекается выборка объёма Решение задач по эконометрике в Excel. По данным выборки рассчитывают числовые характеристики, которые называют статистиками (выборочное среднее, выборочная дисперсия и выборочное среднее квадратическое отклонение). Статистики, полученные по различным выборкам, могут отличаться друг от друга, поэтому они являются только оценками неизвестных параметров генеральной совокупности и обозначают Решение задач по эконометрике в Excel.

Обозначим через Решение задач по эконометрике в Excelвыбранные значения наблюдаемой случайной величины (СВ) Решение задач по эконометрике в Excel. Пусть на основе данных выборки получена статистика Решение задач по эконометрике в Excel, которая является оценкой параметра Решение задач по эконометрике в Excel. Наблюдаемые значения Решение задач по эконометрике в Excelслучайные величины, каждая из которых распределена по тому же закону, что и случайная величина Решение задач по эконометрике в Excel. Поэтому Решение задач по эконометрике в Excelтоже является величиной случайной, закон распределения которой зависит от распределения СВ Решение задач по эконометрике в Excelи объема выборки Решение задач по эконометрике в Excel. Для того, чтобы Решение задач по эконометрике в Excelимела практическую ценность, она должна обладать свойствами несмещенности, состоятельности и эффективности.

Несмещенной называют оценку, для которой выполняется условие:

Решение задач по эконометрике в Excel

Состоятельной называется оценка, удовлетворяющая условию:

Решение задач по эконометрике в Excel

Для выполнения условия 2.2 достаточно, чтобы:

Решение задач по эконометрике в Excel

Эффективной считается оценка, которая при заданном объеме выборки имеет наименьшую возможную дисперсию.

Выборочная средняя является несмещенной и состоятельной оценкой генеральной средней и вычисляется по формуле (1.1).

Выборочная дисперсия найденная по формуле (1.2) является смещенной оценкой для дисперсии генеральной совокупности.

Вводится понятие исправленной выборочной дисперсии, которая является несмещенной оценкой генеральной дисперсии и вычисляется по формуле:

Решение задач по эконометрике в Excel

Исправленное выборочное средне квадратическое отклонение будет равно:

Решение задач по эконометрике в Excel

Теоретическое обоснование использования этих выборочных оценок для определения характеристик генеральной совокупности дают закон больших чисел и предельные теоремы.

Основные виды распределения и функции excel, позволяющие проводить статистическое оценивание

Чтобы построить модели статистических закономерностей возникает необходимость использовать известные виды распределения. Каждое распределение характеризует некоторую случайную величину — результат определенного вида испытаний. С функциями, задающими эти распределения, а также их параметрами можно познакомиться в любом учебнике по теории вероятностей. Выбранное распределение может рассматриваться только как теоретическое (генеральное), а результат опыта — как статистическое (выборочное) распределение. Последнее, в силу ограниченности числа наблюдений, будет лишь приближенно характеризовать теоретическое распределение.

По виду гистограммы и полученным числовым характеристикам выборки делается предположение о теоретическом виде распределения исследуемого признака. Если это удается, то можно найти оценки числовых характеристик и сделать выводы о параметрах генеральной совокупности. Если закон распределения не возможно установить, то подбирается кривая, наилучшим образом сглаживающая данные статистического ряда. Распределения делятся на дискретные и непрерывные.

Решение задач по эконометрике в Excel

Дискретные распределения описываются конечные набором чисел и соответствующими им частотами. Например, оценки, которые может получить студент на экзамене, описываются множеством (2, 3, 4, 5). Поэтому случайная величина -получить определенную оценку на экзамене будет иметь дискретное распределение

Непрерывные распределения описывают случайные величины с непрерывной областью значений. Для непрерывных распределений вероятность сопоставляется не с отдельным значением, а интервалом чисел. Непрерывные распределения в теории вероятностей задаются функцией плотности распределения Решение задач по эконометрике в Excel, которую называют плотность вероятности или функцией распределения Решение задач по эконометрике в Excel.

Площадь фигуры, ограниченной Решение задач по эконометрике в Excelи прямыми Решение задач по эконометрике в Excel, осью Решение задач по эконометрике в Excelопределяет вероятность попадания случайной величины Решение задач по эконометрике в Excelв интервал Решение задач по эконометрике в Excel, которую обозначим Решение задач по эконометрике в Excel. Так как вероятность в точке для непрерывного распределения равна нулю, то имеет место равенство:

Решение задач по эконометрике в Excel

Нормальное распределение

Чаще других в статистических исследованиях применяется нормальное распределение. Теоретическим основанием к его применению служит центральная предельная теорема Ляпунова. Оно имеет два параметра: среднее (а) и стандартное отклонение Решение задач по эконометрике в Excel. В дальнейшем будем использовать сокращенную запись для обозначения этого распределения Решение задач по эконометрике в Excel.

Решение задач по эконометрике в Excel

Значение функции распределения случайной величины Решение задач по эконометрике в Excel, распределенной по нормальному закону распределения, получится, если аргумент интегральная равен ИСТИНА (1). Если аргумент интегральная имеет значение ЛОЖЬ (0), то получите значение плотности вероятности нормального распределения Решение задач по эконометрике в Excel.

Решение задач по эконометрике в Excel

Графики плотности распределения и функции распределения случайной величины построенные в Excel изображены на рис. 2.1.

Решение задач по эконометрике в Excel

Вероятность попадания случайной величины в интервал (с, d) определяется по формуле:

Решение задач по эконометрике в Excel

Решение задач по эконометрике в Excel

Если случайная величина нормально распределена и имеет среднее арифметическое равное нулю и среднее квадратическое отклонение равное единицы, то её называют стандартизованной а для вычисления вероятности попадания в интервал таких случайных величин в Excel существует функция:

Решение задач по эконометрике в Excel

которая возвращает интегральное стандартное распределение.

Решение задач по эконометрике в Excel

называют интегральной функцией Лапласа. Для ее вычисления созданы специальные таблицы.

При статистических исследованиях оценок довольно часто приходится решать обратную задачу: находить значение варианты Решение задач по эконометрике в Excelпо заданной вероятности. Для этого в Excel имеются обратные функции, позволяющие её решить: НОРМОБР (вероятность;Решение задач по эконометрике в Excel) и НОРМСТОБР (вероятность).

Распределения, связанные с нормальным распределением

Несмотря на широкое распространение нормального распределения, в некоторых случаях при построении статистических моделей возникает необходимость в использовании других распределений. Приведем примеры некоторых функций в Excel.

Логнормальное распределение

Решение задач по эконометрике в Excel

Свидетельством близости распределения к логнормальному является значительная ассиметрия, обусловленная ограничением . Например, может использоваться для описания распределения доходов банковских вкладов, месячной заработной платы, посевных площадей и т.д.

Функция ЛОГНОРМРАСП(Решение задач по эконометрике в Excel; среднее; стандартное откл) используется для анализа данных, которые были логарифмически преобразованы. Возвращает интегральное логарифмическое нормальное распределение для Решение задач по эконометрике в Excel, где Решение задач по эконометрике в Excelявляется нормально распределенным с параметрами среднее и стандартное откл.

Хи-квадрат распределение

Чаще всего это распределение используется для определения критического значения статистики с заданным уровнем значимости Решение задач по эконометрике в Excel, для которого выполняется равенство Решение задач по эконометрике в Excel

Читайте также: 

Решение задач по эконометрике в Excel

Решение задач по эконометрике в Excel

— значение, для которого требуется вычислить распределение, степени свободы — число слагаемых минус число линейных связей между элементами совокупности.

Решение задач по эконометрике в Excel

Если задано значение вероятности, то функция ХИ20БР позволяет найти значение , для которого справедливо равенство

Решение задач по эконометрике в Excel

В функции ХИ20БР для поиска применяется метод итераций. Если поиск не закончится после 100 итераций, функция возвращает сообщение об ошибке #Н/Д.

Распределение стьюдента t

Это распределение имеет важное значение для статистических выводов. Функция СТЬЮДРАСП возвращает вероятностную меру «хвостов» распределения. Её синтаксис:

Решение задач по эконометрике в Excel

Решение задач по эконометрике в Excel

— численное значение, для которого требуется вычислить распределение; степени свободы — целое, указывающее число степеней свободы; хвосты — число возвращаемых хвостов распределения.

Если «хвосты» = 1, то функция СТЬЮДРАСП возвращает одностороннее распределение (вероятность правого хвоста).

Если «хвосты» = 2, то функция СТЬЮДРАСП возвращает двухстороннее распределение.

Решение задач по эконометрике в Excel

При этом значение не должно быть отрицательным.

Так как функция симметричная относительно нуля, то справедливо следующие равенства:

Решение задач по эконометрике в Excel

Решение задач по эконометрике в Excel

Функция СТЬЮДРАСПОБР(вероятность; степени свободы) является обратной для распределения Стьюдента и соответствует положительному значению для которого задана вероятность суммы двух «хвостов».

РАСПРЕДЕЛЕНИЕ ФИШЕРА Эту функцию можно использовать, чтобы определить, имеют ли два множества данных различные степени разброса результатов. Например, можно проанализировать результаты тестирования старшеклассников и определить, различается ли разброс результатов для мальчиков и девочек.

Решение задач по эконометрике в Excel

Решение задач по эконометрике в Excel

— значение, для которого вычисляется функция; степени свободы1— число степеней свободы числителя; степенисвободы2—число степеней свободы знаменателя.

Решение задач по эконометрике в Excel

Обратное значение для -распределения вероятностей возвращает функция

Решение задач по эконометрике в Excel

Распределения дискретной случайной величины в excel биномиальное распределение

Распределение используется для моделирования случайной величины с конечным числом испытанной. В каждом испытании случайная величина может принимать только два значения: успех или неуспех (0 или 1). Вероятность успеха постоянна и не зависит от результатов других испытаний. Биномиальное распределение описывает общее число успехов при указанном числе испытаний. Данное распределение требует указать два параметра: число испытаний Решение задач по эконометрике в Excelи вероятность успеха Решение задач по эконометрике в Excel.

Пример с решением №2.1.

Решение задач по эконометрике в Excel

Группа из 20 студентов сдает экзамен. Вероятность сдать экзамен по данным прошлых лет равна 0,3. Отобрано 5 человек составьте закон распределения случайной величины — числа студентов, сдавших экзамен.

В ячейку В7 помещена функция БИНОМРАСЩА7; SBS1; $В$2; 0) (рис 2.3.). Скопируйте формулу для остальных ячеек столбца В, как показано на рис. 2.2. Чтобы получить данные столбца С надо в качестве аргумента интегральная поставить единицу.

С помощью функции БИНОМРАСП можно получить только вероятности равные числу успеха к (интегральная равна нулю) или не большие к (интегральная равна единицы). Для вычисления других вероятностей надо воспользуйтесь значениями столбцов Решение задач по эконометрике в Excelи Решение задач по эконометрике в Excel. Значения в столбцах Решение задач по эконометрике в Excelнаходятся по формулам:

Решение задач по эконометрике в Excel

Для построение диаграммы биномиального распределения выделите ячейки В7:В12 и нажмите кнопку мастер диаграмм на стандартной панели инструментов. Отформатируйте её как показано на рис. 2.2.

В качестве обратной функции к БИНОМРАСП в Exccl рассматривается функция КРИТБИНОМ. Её синтаксис:

Решение задач по эконометрике в Excel

Решение задач по эконометрике в Excel

Гипергеометрическое распределение

Распределение возвращает вероятность заданного количества успехов в выборке, если заданы: размер выборки Решение задач по эконометрике в Excel, количество успехов в генеральной совокупности Решение задач по эконометрике в Excelи размер генеральной совокупности Решение задач по эконометрике в Excel. Функция ГИПЕРГЕОМЕТ используется для задач с конечным числом элементов генеральной совокупностью, где каждое наблюдение — это успех или неудача, а каждое подмножество заданного размера (Решение задач по эконометрике в Excel) выбирается с вероятностью равной

Решение задач по эконометрике в Excel

ГИПЕРГЕОМЕТ (числоуспеховввыборке; размер выборки; числоуспеховвсовокупности; размерсовокумности)

Распределение Пуассона

Обычное применение распределения Пуассона состоит в предсказании количества событий, происходящих за определенное время, например: количество машин, появляющихся за 1 минуту на станции техобслуживания.

Решение задач по эконометрике в Excel

Синтаксис: ПУАССОН(; среднее; интегральная)

Решение задач по эконометрике в Excel

— количество событий.

среднее — ожидаемое численное значение.

интегральная — логическое значение, определяющее форму возвращаемого распределения вероятностей.

Решение задач по эконометрике в Excel

Если аргумент «интегральная» имеет значение ИСТИНА, то функция ПУАССОН возвращает интегральное распределение Пуассона, то есть вероятность того, что число случайных событий будет от 0 до включительно.

Решение задач по эконометрике в Excel

Если этот аргумент имеет значение ЛОЖЬ, то вычисляется значение функции плотности распределения Пуассона, то есть вероятность того, что событий появится равно раз.

Интервальные оценки

Величина оценки Решение задач по эконометрике в Excel, найденная по выборке, является лишь приближенным значением неизвестного параметра Решение задач по эконометрике в Excel. Вопрос о точности оценки в математической статистике устанавливается с помощью соотношения:

Решение задач по эконометрике в Excel

Решение задач по эконометрике в Excel

где — доверительная вероятность или надежность интервальной оценки (принимает значения 90%, 91%,…99%, 99,9%);

Решение задач по эконометрике в Excel

— предельная ошибка (точность) оценки. Для случайной величины, имеющей нормальное распределенние

Решение задач по эконометрике в Excel

Значение Решение задач по эконометрике в Excelвычисляется с помощью функции Лапласа, если Решение задач по эконометрике в Excelзадано в условии по формуле Решение задач по эконометрике в Excel.

Если стандартное отклонение находится по выборке, то рассматривают два случая:

Решение задач по эконометрике в Excel

1) используется функция Стьюдента:

Решение задач по эконометрике в Excel

2) Решение задач по эконометрике в Excelиспользуется функция Лапласа Решение задач по эконометрике в Excel

Если раскрыть модуль в уравнении (2.7), то получим неравенство:

Решение задач по эконометрике в Excel

Числа Решение задач по эконометрике в Excelназывают доверительными границами, а интервал Решение задач по эконометрике в Excel— доверительным интервалом или интервальной оценкой параметра Решение задач по эконометрике в Excel.

Границы доверительного интервала симметричны относительно точечной оценки Решение задач по эконометрике в Excel. Поэтому точность оценки Решение задач по эконометрике в Excel. иногда называют половиной длины доверительного интервала.

Так как Решение задач по эконометрике в Excelвеличина случайная, то границы доверительного интервала могут меняться, кроме того, они будут меняться с изменением доверительной вероятности, поэтому соотношение (2.7) следует читать так: «со статистической надежностью Решение задач по эконометрике в Excel-100% доверительный интервал Решение задач по эконометрике в Excelсодержит параметр генеральной совокупности Решение задач по эконометрике в Excel».

Решение задач по эконометрике в Excel

Рассмотрим на примерах, как строятся доверительные интервалы для математического ожидания, дисперсии и среднего квадратического отклонения нормально распределенного количественного признака .

Доверительный интервал для математического ожидания с известной дисперсией

Решение задач по эконометрике в Excel

При построении доверительного интервала используется функция НОРМОБР для . Границы доверительного интервала можно определить из уравнений:

Решение задач по эконометрике в Excel

Решение задач по эконометрике в Excel

где называют уровнем значимости.

Пример с решением №2.2.

Спонсоры телевизионных программ хотят знать, сколько времени дети проводят за экраном телевизора. После опроса 100 человек оказалось, что среднее число часов в неделю соответствует 27,5 часов, а средне квадратическое отклонение равно 8,0 часов. Найдите 95% доверительный интервал для оценки среднего количества часов в неделю, которое дети проводят за просмотром телепередач

На основании исследований с 95% вероятностью можно утверждать, что за просмотром телевизора дети проводят от 25,93 до 28,65 часов. Формулы для вычисления приведены на рис 2.4.

Решение задач по эконометрике в Excel

Доверительный интервал для математического ожидания с неизвестной дисперсией

Решение задач по эконометрике в Excel

Как правило, дисперсия оцениваемого параметра является величиной неизвестной. Тогда находят исправленную выборочную дисперсию, а доверительный интервал строится с помощью -распределения (Стьюдента).

Решение задач по эконометрике в Excel

Функция СТЬЮДРАСПОБРО возвращает значение , для которого:

Решение задач по эконометрике в Excel

Решение задач по эконометрике в Excel

где — это случайная величина, соответствующая распределению Стьюдента и

Решение задач по эконометрике в Excel

Пример с решением №2.3.

Владелец таксопарка хочет спрогнозировать свои расходы на следующий год. Основной статьей расходов является покупка топлива. Так как бензин стоит дорого, владелец стал использовать газ. Были выбраны восемь такси, и оказалось, что число миль на галлон соответственно равно 28,1, 33,6, 41,1, 37,5, 27,6,36,8, 39,0 и 29,4. Оцените с доверительной вероятностью 95% средний пробег на один галлон газа для всех такси в парке, предполагая, что он распределен нормально.

Решение задач по эконометрике в Excel

После исследования оказалось, что средний пробег на один галлон для всех такси в парке находится между 29,71 и 38,81 миль на галлон. Формулы для вычисления приведены на рис.2.5.

Доверительный интервал для дисперсии и среднего квадратического отклонения

Рассмотрим нормально распределенную случайную величину, дисперсия Решение задач по эконометрике в Excelкоторой неизвестна. По результатам Решение задач по эконометрике в Excelнаблюдений: Решение задач по эконометрике в Excelможно определить среднее значение Решение задач по эконометрике в Excel(1.1) и исправленную выборочную дисперсию Решение задач по эконометрике в Excel(2.4).

Теперь с доверительной вероятностью Решение задач по эконометрике в Excelопределим половину длины доверительного интервала Решение задач по эконометрике в Excelдля которого выполняется условие:

Решение задач по эконометрике в Excel

Доверительный интервал для дисперсии запишется в виде неравенства:

Решение задач по эконометрике в Excel

Выборочня исправленная дисперсия несмещенная оценка генеральной дисперсии равна:

Решение задач по эконометрике в Excel

Решение задач по эконометрике в Excel

Так как — результаты независимых наблюдений нормально распределенной СВ, значит сумма квадратов

Решение задач по эконометрике в Excel

имеет Решение задач по эконометрике в Excelраспределение с Решение задач по эконометрике в Excelстепенью свободы. Выразив Решение задач по эконометрике в Excelчерез Решение задач по эконометрике в Excelи Решение задач по эконометрике в Excel, получим:

Решение задач по эконометрике в Excel

Тогда уравнение 2.9 примет вид:

Решение задач по эконометрике в Excel

Решение задач по эконометрике в Excel

из которого доверительный интервал для :

Решение задач по эконометрике в Excel

С помощью функции ХИ20БР можно найти верхнюю и нижнюю границы Решение задач по эконометрике в Excelи Решение задач по эконометрике в Excelдля Решение задач по эконометрике в Excel:

Решение задач по эконометрике в Excel

Подставив найденные значения в уравнения:

Решение задач по эконометрике в Excel

получим верхнюю и нижнюю границы доверительного интервала для дисперсии:

Решение задач по эконометрике в Excel

Доверительный интервал для среднего выборочного значения а получится, если извлечь корень из каждой части предыдущего неравенства.

Доверительный интервал для доли признака генеральной совокупности

Проводится серия из Решение задач по эконометрике в Excelиспытаний, в каждом из которых наблюдается событие Решение задач по эконометрике в Excel(событие может произойти или нет). Пусть событие произошло Решение задач по эконометрике в Excelраз, тогда Решение задач по эконометрике в Excelназывают частотой появления события Решение задач по эконометрике в Excelили выборочной долей признака.

Если Решение задач по эконометрике в Excelвероятность с которой событие может произойти (называют генеральной долей распределения количественного признака) в каждом из испытаний, то частота Решение задач по эконометрике в Excelявляется точечной несмещенной оценкой вероятности Решение задач по эконометрике в Excel.

Зададим доверительную вероятность Решение задач по эконометрике в Excelи найдем такие числа Решение задач по эконометрике в Excelи Решение задач по эконометрике в Excelдля которых выполняется соотношение

Решение задач по эконометрике в Excel

Интервал Решение задач по эконометрике в Excelявляется доверительным интервалом для Решение задач по эконометрике в Excel, отвечающий надежности Решение задач по эконометрике в Excel.

Решение задач по эконометрике в Excel

При большом числе испытаний Бернулли выборочная доля является нормально распределенной случайной величиной

Решение задач по эконометрике в Excel

Решение задач по эконометрике в Excel

где является дисперсией выборочной доли признака,

Решение задач по эконометрике в Excel

a её математическим ожиданием.

Тогда доверительный интервал генеральной доли признака можно найти, используя функцию Лапласа:

Решение задач по эконометрике в Excel

Решение задач по эконометрике в Excel

Рассматривают два случая: большое количество проведенных испытаний и малое. В случае малого объема выборки найти Решение задач по эконометрике в Excelи Решение задач по эконометрике в Excelможно с помощью специальных таблиц распределения Бернулли.

Проверка статистических гипотез о числовых значениях параметров нормального распределения

Данные выборочных обследований часто являются основой для принятия одного из нескольких решений. При этом любое суждение о генеральной совокупности будет сопровождаться случайной погрешностью и поэтому может рассматриваться лишь как предположительное.

Под статистической гипотезой понимается всякое высказывание о виде неизвестного распределения, или параметрах генеральной совокупности известных распределений, или о равенстве параметров двух распределений, или о независимости выборок, которое можно проверить статистически, то есть опираясь на результаты случайных наблюдений.

Наиболее часто формулируются и проверяются гипотезы о числовых значениях параметров генеральной совокупности, подчиняющихся одному из известных законов распределения: нормальному, Стьюдента, Фишера и др.

Основные понятия статистической гипотезы

Подлежащая проверке гипотеза называется основной (нулевой) обозначают её Решение задач по эконометрике в Excel. Содержание гипотезы записывается после двоеточия Решение задач по эконометрике в ExcelРешение задач по эконометрике в Excel

Каждой основной гипотезе противопоставляется альтернативная (конкурирующая) гипотеза Решение задач по эконометрике в Excel. Как правило, основной гипотезе можно противопоставить несколько альтернативных гипотез. Если выборочные данные противоречат гипотезе Решение задач по эконометрике в Excel, то гипотеза отклоняется, в противном случае принимается.

Статистическая проверка гипотез, основанная на результатах выборки, связана с риском, принять ложное решение. Если по выборочным данным основная гипотеза отвергнута, в то время как для генеральной совокупности она справедлива, то говорят об ошибке первого рода. Вероятность допустить такую ошибку принято называть уровнем значимости и обозначать а (10%, 9%,… 1%).

Рассматривается и ошибка второго рода, когда основная гипотеза принимается, в действительности же верной оказывается альтернативная гипотеза. В таком случае говорят об ошибке второго рода, а вероятность допустить эту ошибку обозначают alt=»Решение задач по эконометрике в Excel» width=»» />, величину 1- alt=»Решение задач по эконометрике в Excel» width=»» />называют мощностью критерия.

Поскольку ошибки первого и второго рода исключить невозможно, то в каждом конкретном случае пытаются минимизировать потери от этих ошибок. Увеличение объема выборки является одним из таких путей.

Критерии проверки. Критическая область

Вывод о соответствии выборочных данных с проверяемой гипотезой делается на основе некоторого критерия. Критерий проверки гипотезы реализуют с помощью некоторой статистики Решение задач по эконометрике в Excel(статистической характеристики определяемой по выборочным данным). Эту величину принято обозначать: Решение задач по эконометрике в Excel— если она нормально распределена с Решение задач по эконометрике в Excel, Решение задач по эконометрике в Excel— если она нормально распределена с Решение задач по эконометрике в Excel, Решение задач по эконометрике в Excel— если она распределена по закону Стьюдента, Решение задач по эконометрике в Excel— если она распределена по закону Решение задач по эконометрике в Excel, Решение задач по эконометрике в Excel— если она имеет распределение Фишера.

После выбора критерия множество всех его возможных значений разбивают на два непересекающихся подмножества. Одно содержит значения критерия, при которых нулевая гипотеза отклоняется, это множество значений называют критической областью. Другое, называют областью принятия гипотезы — содержит совокупность значений, при которых нулевая гипотеза принимается.

Вычисленное по выборке значение критерия (Решение задач по эконометрике в Excel) может принадлежать одному из этих множеств и в зависимости от этого нулевая гипотеза принимается, если Решение задач по эконометрике в Excelпринадлежит области принятия гипотезы и отвергается в противном случае. Точки, разделяющие эти две области, называют критическими и обозначают Решение задач по эконометрике в Excel. Различают три вида критических областей: левосторонняя Решение задач по эконометрике в Excelправосторонняя Решение задач по эконометрике в Excelи двухсторонняя Решение задач по эконометрике в Excel

Решение задач по эконометрике в Excel

Если попадает в критическую область, то надо говорят, что основная гипотеза отвергается в пользу альтернативной при заданном уровне значимости.

Общая схема проверки гипотезы

Проверка гипотезы с помощью уровня значимости.

  1. Формулируется нулевая гипотеза и альтернативная ей.
  2. Выбирается уровень значимости.
  3. Определяется критическая область и область принятия гипотезы.
  4. Выбирают критерий, и находят его расчетное значение по выборочным данным.
  5. Вычисляют критические точки.
  6. Принимается решение.

Другим способом проверки гипотезы является вывод р-значения (значения вероятности). В этом случае не указывается уровень значимости и не принимается решения об отбрасывании нулевой гипотезы. Вместо этого проверяем насколько правдоподобно, что полученная оценка соответствует значению генеральной совокупности. При левостороннем или правостороннем критерии рассчитываются вероятности попадания статистики 0 в критическую область. Если применяется двухсторонний критерий, то оценивается разность между выборочным средним и предполагаемым средним совокупности по модулю. Если р-значснис мало, то выборочное среднее значительно отличается от среднего совокупности.

Проверка гипотезы о математическом ожидании нормально распределенной (m0) случайной величины при известной дисперсии

Пусть генеральная совокупность имеет нормальное распределение, причем её математическое ожидание равно Решение задач по эконометрике в Excel, а дисперсия равна Решение задач по эконометрике в Excel. По выборочным данным найдено Решение задач по эконометрике в Excel. Есть основания утверждать, что Решение задач по эконометрике в Excel?

Решение задач по эконометрике в Excel

На рис. 2.6. приведены возможные варианты проверки нулевой гипотезы. Результаты проверки включают в себя решение о принятии нулевой или альтернативной гипотез, основанные на уровне значимости альфа и р-значении.

Пример с решением №2.4.

Решение задач по эконометрике в Excel

Клиенты банка в среднем снимают со своего счета 100$ при среднем квадратическом отклонении = 50$. Если выплаты отдельным клиентам независимы, то, сколько денег должно быть зарезервировано в банке на выплаты клиентам, чтобы их хватило на 100 человек с вероятностью 0,95? Каков при этом будет остаток денег, гарантированный с той же надежностью, если для выплат зарезервировано 16000$?

На каждого клиента банк резервирует сумму в 160$. По выборочным данным эта сумма составляет 100$.

Проверим гипотезу, может ли банк снизить свои резервы, то есть основная гипотеза может быть записана

Решение задач по эконометрике в Excel

В качестве альтернативной гипотезы рассмотрим ситуацию: «банк сможет обеспечить клиентов, если расчетная сумма выплат для каждого клиента будет снижена до 100$», тогда

Решение задач по эконометрике в Excel

Решение задач по эконометрике в Excel

Принимается гипотеза Решение задач по эконометрике в Excel(рис2.7)., что означает: банк может снизить сумму резервов до 10000$. Используя р-значения можно сделать вывод, если альтернативная гипотеза верна (в среднем клиент берет 100S и меньше), то с вероятностью 100%, случайная величина Решение задач по эконометрике в Excel( 100$, 50$).

С надежностью 95% можно гарантировать, что у банка имеется остаток более 6000$.

Проверка гипотезы о математическом ожидании при неизвестной дисперсии

Решение задач по эконометрике в Excel

Пусть генеральная совокупность имеет нормальное распределение, причем её дисперсия неизвестна. Данная ситуация более реалистична, чем предыдущая. Пусть есть основания утверждать, что .

По результатам выборки найдем Решение задач по эконометрике в Excelи Решение задач по эконометрике в Excel.Сформулируем основную гипотезу:

Решение задач по эконометрике в Excel

Решение задач по эконометрике в Excel

где — нормативное значение. Введем статистику:

Решение задач по эконометрике в Excel

Решение задач по эконометрике в Excel

которая имеет распределение Стьюдента с степенью свободы. Зададим уровень значимости альфа и найдем критическую область. На рис. 2.8 приведены формулы левостороннего, правостороннего или двухстороннего критериев проверки среднего выборки с использованием распределения Стьюдента.

Решение задач по эконометрике в Excel

Пример с решением №2.5.

Производитель выпускает стальные стержни. Для улучшения качества планируется внедрить новую технологию, которая получить стержни по средней прочности лучшие на излом. Текущий стандарт прочности на излом составлял 500 фунтов.

Характеристики прочности стержней, произведенных по новой технологии, представлены в D3:D14 рис. 2.9. сформулируем гипотезу об увеличении прочности стержней.

Решение задач по эконометрике в Excel

Решение задач по эконометрике в Excel

Возьмем выборочное среднее и проверим правосторонний критерий. Результаты приведены на рис. 2.9.

Решение задач по эконометрике в Excel

Новая технология позволит улучшить среднюю прочность стержней. Так как , то можно с уверенностью сказать, что новая технология дает статистически существенные изменения показателя прочности на излом.

Решение задач по эконометрике в Excel

Построим сравнительные графики новой технологии и стандарта (рис2.10).

Решение задач по эконометрике в Excel

Большинство наблюдений превышает стандартную прочность излома стержней. Такая ситуация практически невозможна, если случайная величина имеет нормальное распределение со средним значением 500 фунтов следовательно по данным выборки можно предположить, что новая технология дает увеличение прочности.

Проверка гипотезы относительно доли признака

Рассматривается два основных типа задач:

1) сравнение выборочной доли признака Решение задач по эконометрике в Excelс генеральной долей Решение задач по эконометрике в Excel

Решение задач по эконометрике в Excel

Для проверки этой гипотезы используют статистику :

Решение задач по эконометрике в Excel

Решение задач по эконометрике в Excel

которая имеет нормальное распределение .

Решение задач по эконометрике в Excel

Критическое значение этой статистики можно найти по заданному уровню значимости с помощью функции НОРМСТОБР см. рис.2.6.

2) для сравнения долей признака двух выборок Решение задач по эконометрике в Excelи Решение задач по эконометрике в Excelвыдвигается гипотеза: что две выборки из одной совокупности с долей признака Решение задач по эконометрике в Excel, а полученное расхождение есть результат случайностей, сопровождаемых отбором.

Решение задач по эконометрике в Excel

Решение задач по эконометрике в Excel

Для больших выборок вводится статистика имеющая

Решение задач по эконометрике в Excel

Используют функцию НОРМРАСПОБР для поиска критического значения по уровню значимости альфа, и сравнивают с расчетным значением

Решение задач по эконометрике в Excel

Решение задач по эконометрике в Excel

Малые выборки ( — малые числа) не могут быть исследованы с помощью нормального распределения.

Оценка среднего по двум выборкам

При анализе экономических показателей довольно часто приходится сравнивать две генеральные совокупности. Например, можно сравнить два варианта инвестирования по размерам средних дивидендов, качество знаний студентов двух университетов — по среднему баллу на комплексном тестовом экзамене. Если дисперсии известны, то можно использовать Двухвыборочный z-тест для средних. Кроме этого существуют три варианта Двухвыборочный t-тестов. Эти три средства допускают следующие условия: равные дисперсии генерального распределения, дисперсии выборок не равны, а также представление двух выборок до и после наблюдения по одному и тому же субъекту.

Для запуска этих инструментов анализа данных надо выполнить действия меню Сервис/Анализ данных выберите из списка нужный вам пункт.

Для выполнения таких проверок инструментами анализа Excel требуется наличие двух выборок, оценка полагаемой разницы между средними значениями выборок и альфа — уровень значимости. Все перечисленные критерии предполагают, что рассматриваемые совокупности нормально распределены, и выборки получены случайно.

Случай равных дисперсий

Рассмотрим данный критерий на примере.

Пример с решением №4.1.

На заводе проводится эксперимент по оценке новой технологии сборки устройств. Рабочие делятся на две группы; одна обучается новой технологии, другая — стандартной. В конце обучения измеряется время (в минутах), необходимое рабочему для сборки устройства. Результаты приведены в диапазоне A L:В10 рис 4.1. Можно ли сделать вывод, исходя из данных выборок, что время сборки по новой технологии меньше, чем по стандартной.

На листе Exccl постройте графики для выборок Стандартная и Новая. Разброс (дисперсии равны) данных практически одинаковый, этот вывод можно сделать, изучив амплитуды колебания графиков (рис. 4.1). Маркеры графика Новая расположены ниже, поэтому можно предположить, что среднее время сбора устройств по новой технологии меньше.

Выдвигаем гипотезу: «Среднее время сборки по новой технологии не изменилось», . эту гипотезу можно записать в виде:

Решение задач по эконометрике в Excel

Решение задач по эконометрике в Excel

альтернативная гипотеза, утверждающая «Новая технология сокращает время сборки». Необходимо проверить левосторонний критерий для основной гипотезы.

Решение задач по эконометрике в Excel Решение задач по эконометрике в Excel

В диалоговом окне Анализ данных и выберите Двухвыборочный t-тест с одинаковыми дисперсиями. Заполните поля, как показано на рис.3.2. и нажмите кнопку ОК. результат появится на листе Excel в диапазоне D4: F16, как на рис 3.3.

Решение задач по эконометрике в Excel

Описание полученных результатов сравнения средних двух выборок (рис.3.3).

Объединенная дисперсия — это взвешенное среднее выборочных дисперсий, со степенями свободы каждой дисперсии в качестве весов (8). Она является оценкой общей дисперсии двух выборок и используется для определения стандартной ошибки разности средних.

Решение задач по эконометрике в Excel

— число степеней свободы критерия (18-2).

Решение задач по эконометрике в Excel

-статистика вычисляется как отношение разности средних к стандартной ошибке.

Решение задач по эконометрике в Excelодностороннее является односторонним Решение задач по эконометрике в Excel-значением, если Решение задач по эконометрике в Excelесли Решение задач по эконометрике в Excelто Решение задач по эконометрике в Excel. Двухстороннее Решение задач по эконометрике в Excel-значение равно удвоенному одностороннему Решение задач по эконометрике в Excel-значению.

Найденное расчетное значение Решение задач по эконометрике в Excel-статистика= 1,649 и Решение задач по эконометрике в Excel-критическое равное 1,746 сравниваем с учетом, что рассматривалась правосторонняя критическая область, делаем вывод: « Решение задач по эконометрике в Excelпринимается». С 5% уровнем значимости мы не можем отвергнуть предположение о равенстве средних значений выборки.

Если бы рассматривалась левосторонняя гипотеза, то:

Решение задач по эконометрике в Excel

Можно построить доверительный интервал для разности средних значений выборок (результат в диапазоне Н3:18 рис. 3.4).

Среднее разности находится как разность ЕЗ — F3,

alt=»Решение задач по эконометрике в Excel» width=»» />— статистика для разности равна alt=»Решение задач по эконометрике в Excel» width=»» />критическому двухстороннему (Е14), стандартная ошибка найдена делением (13 -Е8)/ ЕЮ.

Решение задач по эконометрике в Excel

Половина длины равна произведению на стандартную ошибку.

Решение задач по эконометрике в Excel

Доверительный интервал для разности средних значений равен (-1,046; 8,379) с вероятностью 95%.

Случай разных дисперсий

В данном случае не предполагается равенство дисперсий выборок, но сохраняется требование их нормальности и независимости.

Для принятия решения в таких случаях надо использовать Двухвыборочный t-тест с различными дисперсиями.

Пример с решением №3.2.

Для производства нового продукта предлагается две схемы размещения рабочих. Шесть случайно отобранных рабочих собирают изделие по схеме А, а другие восемь — по схеме В. Время сборки записывается соответственно в столбец А и В рис 3.5. Можно ли сделать вывод с 5% уровнем значимости, что время сборки различаются в схемах, при условии, что они нормальные.

Построим диаграммы данных выборок и сравним среднее время сборки и разброс.

Решение задач по эконометрике в Excel

Сравнивая графики для схем Решение задач по эконометрике в Excelи Решение задач по эконометрике в Excelможно сделать вывод, что разброс данных в схеме Решение задач по эконометрике в Excelбольше, однако среднее время сборки меньше.

Выдвинем гипотезу: «Размещение рабочих не влияет на время сборки изделий:

Решение задач по эконометрике в Excel

В качестве альтернативной гипотезы выдвинем предположение: «время сборки изделий по схеме Решение задач по эконометрике в Excelи Решение задач по эконометрике в Excelне равны».

Решение задач по эконометрике в Excel

Для проверки этой гипотезы следует применить двухсторонний критерий. Инструкции по использованию -теста те же, что и в примере 4.1. Результаты применения критерия приведены на рис.3.6.

Сравнивая расчетное значение Решение задач по эконометрике в Excel-статистики и Решение задач по эконометрике в Excel-критическое двухстороннее можно сделать вывод, что принимается гипотеза Решение задач по эконометрике в Excel, то есть размещение рабочих не влияет на время сборки изделий.

Решение задач по эконометрике в Excel

Используя -значение 0,180 (18%) можно сделать вывод, что с вероятностью 18% можно получить выборку со средним отличающимся на 1,6 мин в любом направлении. Доверительный интервал для разности средних составил (-4,138; 0,938).

Решение задач по эконометрике в Excel

Парный выборочный критерий

Критерий используется в случае, когда одна и та же группа наблюдается дважды. Обычно это происходит при измерении характеристик до и после эксперимента. Например, студенты могут тестироваться дважды до и после курса по некоторой дисциплине. Можно использовать критерий и для других естественных пар наблюдений.

Пример с решением №3.3.

Исследователь хочет определить, имеется ли разница в успешности автомобильных сделок при их проведении продавцами женского и мужского пола. Для этого были выбраны восемь продавщиц и определена комиссия, заработанная каждой в прошедшем году. Так как опытность влияет на размер комиссии, то исследователь записала и стаж работы для каждой из восьми женщин. Данные приведены в столбцах Решение задач по эконометрике в Excelи Решение задач по эконометрике в Excelрис. 3.7. Для проверки предположения были взяты продавцы с тем же стажем работы, что и женщины; значения комиссий мужчин приведены в столбце С рис.4.7. Можем ли мы с уровнем значимости 5% утверждать, что женщины имеют существенно другие показатели, по сравнению с продавцами мужчинами?

Решение задач по эконометрике в Excel

Нулевая гипотеза состоит в том, что разность средних совокупностей равна нулю. Однако по результатам выборок получено среднее значение разности и она равна 2,25 тыс. рублей. Тогда в качестве альтернативной гипотезы рассмотрим утверждение, что продавцы различных полов имеют различные показатели. Для проверки гипотез применим Двухвыборочных парный t-тест для средних. После его запуска в диапазоне F1 :Н 14 будут помещены результаты применения этого критерия. Они практически ничем не отличаются от предыдущих результатов (пример 4.1, пример 4.2), только в ячейке G7 содержится коэффициент корреляции.

Принимая решение, для данного теста мы вынуждены принять гипотезу о равенстве средних значений комиссии у продавцов мужчин и женщин. Об этом говорят значения Решение задач по эконометрике в Excelи Решение задач по эконометрике в Excel: -2,365<1,895<2,365.

В случае проверки с гипотезы с помощью alt=»Решение задач по эконометрике в Excel» width=»» />-значения ( alt=»Решение задач по эконометрике в Excel» width=»» />=14%) можно с вероятностью 14% получить выборку с разностью меньшей чем -2,25 тыс. рублей или большей, чем 2,25 тыс. рублей.

В диапазоне J1:K7 представлены вычисления 95% доверительного интервала для разности средних выборок.

Анализ дисперсий

Решение задач по эконометрике в Excel

-распределение может быть использовано для проверки нулевой гипотезы о равенстве дисперсий двух выборок. Критерий предполагает, что выборки из генеральной совокупности независимы и нормально распределены.

Двухсторонний критерий применяется в случае, если альтернативная гипотеза состоит в том, что дисперсии выборок различны. Для этого составляется отношение дисперсий, которое сравнивается с единицей.

Если альтернативная гипотеза проверяет утверждение о том, что дисперсия одной выборки строго больше дисперсии другой выборки, применяется односторонний критерий.

Напомним, что заданный уровень значимости альфа для двухстороннего критерия делится пополам.

В примере 3.2. проверялась гипотеза о равенстве средних значений выборок, представляющих две схемы размещения рабочих мест. При этом предполагалось, что дисперсии этих выборок не равны. Воспользуемся данными этого примера и проверим гипотезу о равенстве дисперсий. Применим двухсторонний Решение задач по эконометрике в Excelтест для 10% уровня значимости (5% на каждый хвост распределения) для проверки нулевой гипотезы о равенстве дисперсий. В качестве альтернативной гипотезы рассматривается утверждение, что дисперсии не равны. На рис. 4.1. приведены данные Решение задач по эконометрике в Excel-теста. Значение Решение задач по эконометрике в Excel-статистики записано в ячейке Е8 и равно 3,060. в ячейке Е9 приведены данные р-значения, которое является правосторонней вероятностью получить значение большее или равное Решение задач по эконометрике в Excel-статистики. Критическое значение для правосторонней области находится в ячейке ЕЮ и равно 3,972. такое же значение будет иметь правая граница двухсторонней области с уровнем значимости 10%. На рис. 4.1. в столбце I найдено критическое значение для левой границы. Так как Решение задач по эконометрике в Excel=3,060 меньше Решение задач по эконометрике в Excel=3,972, мы не можем отвергнуть нулевую гипотезу равенства дисперсий.

Решение задач по эконометрике в Excel

Решение задач по эконометрике в Excel

Можно не использовать двухвыборочный -тест для проверки гипотезы о равенстве дисперсий, а воспользоваться функцией FPACTIOBP, которая имеет синтаксис РРАСПОБР(всроятность;степенисвоб1; степенисвоб2), т.е.

Решение задач по эконометрике в Excel

Решение задач по эконометрике в Excel

Значение статистики тоже легко находится с использованием встроенных функций Excel.

Критерий хи-квадрат (критерий согласия)

Этот критерий используют для проверки гипотезы о виде распределения выборки. Её проверка состоит в том, чтобы на основе сравнения фактических и теоретических частот сделать вывод о соответствии фактического распределения аредполагаемому. В критерии используется статистика:

Решение задач по эконометрике в Excel

Решение задач по эконометрике в Excel

где — число групп, на которое разбито распределение;

Решение задач по эконометрике в Excel

— теоретическая частота, рассчитанная по предполагаемому распределению;

Решение задач по эконометрике в Excel— наблюдаемая (фактическая) частота признака в Решение задач по эконометрике в Excel-той группе.

Статистика 6.1 подчиняется ХИ-квадрат распределению с Решение задач по эконометрике в Excelстепенями свободы, где Решение задач по эконометрике в Excel— число параметров генерального распределения, вычисляемых по выборочным данным. В таблице 6.1. указывается значение Решение задач по эконометрике в Excelдля основных видов распределения.

Решение задач по эконометрике в Excel

В некоторых случаях сравнение может проводиться с заранее данным распределением, или с распределением у которого часть параметров указана (а не рассчитывается по выборочным данным). В этом случае число к (параметров генерального распределения) уменьшается.

Для применения критерия ХИ-квадрат требуется выполнение условий:

  1. экспериментальные данные должны быть независимыми;
  2. объем выборки должен быть достаточно большим (не менее 50);
  3. частота в каждой группе должна быть не менее 5. Если это условие не выполняется, то проводят объединение малочисленных интервалов, при этом частоты объединенных интервалов суммируются.

При полном совпадении теоретического и фактического распределений Решение задач по эконометрике в Excel, в противном случае Решение задач по эконометрике в Excel. Проверка гипотезы о равенстве распределений Решение задач по эконометрике в Excelосуществляется с помощью

Решение задач по эконометрике в Excel

которое находится по заданному уровню значимости. Гипотеза Решение задач по эконометрике в Excelпринимается, если Решение задач по эконометрике в Excel, в противном случае отвергается

Основанием для выдвижения гипотезы о виде распределения генеральной совокупности могут служить:

  1. формальные свойства числовых характеристик выборочных данных:

a. равенство нулю ассиметрии и эксцесса является признаком нормального распределения;

b. дисперсия и среднее значение выборки равны является признаком распределения Пуассона и т.д;

  1. графический анализ выборочных данных: полигон, гистограмма, функция накопленных частот их сравнение с теоретическими функциями известных распределений.

Если статистический ряд не является интервальным, то его данные подвергаются группировке и представляются в виде q интервалов равной длины. Далее находят количество вариант, попавших в каждый частичный интервал. Если значения статистического ряда являются равноотстоящими вариантами с заданными частотами, то данные можно и не группировать.

Проверка гипотезы о нормальном распределении генеральной совокупности

В предыдущих примерах мы пользовались тем, что значения выборки распределены по нормальному закону распределения. Рассмотрим применение критерия согласия, проверяющего справедливость гипотезы о наличии нормального распределения в совокупности на примере.

Пример с решением №5.1.

Чтобы установить гарантийный срок на товар, производитель хочет проверить является ли срок службы выпускаемого товара нормально распределенным. Случайным образом отобранные 200 единиц товара при проверке распределились следующим образом по количеству отработанных часов:

Решение задач по эконометрике в Excel

Запишем нулевую и альтернативную гипотезы:

Решение задач по эконометрике в Excel

: Совокупность сроков службы нормально распределена.

Решение задач по эконометрике в Excel

: Совокупность сроков службы имеет другое распределение.

Проверку будем проводить с помощью встроенных функций Excel. Для этого внесем данные, как показано на рис. 5.1 в ячейки А7:В11.

Решение задач по эконометрике в Excel

ШАГ 1. Найдите среднее значение и дисперсию интервального ряда по формулам 1.1 и 1.2. Для этого в ячейки D15:D19 занесите середины интервалов. Середина первого интервала определяется по формуле:

Решение задач по эконометрике в Excel

где пять половина длины следующего интервала. Аналогично вычисляется середина последнего интервала, только учитывается половина длины предшествующего интервала. В диапазон Е15:Е19 скопируйте фактические частоты. В ячейку Е20 запишите формулу: =СУММ(Е15:Е19).

В ячейку F15 поместите произведениех^ =D15*E15 и скопируйте в остальные ячейки диапазона F15:F 19. Теперь можете воспользоваться формулой 1.1 для определения среднего, значение которого поместите в ячейку В4.

Дисперсию найдите самостоятельно, для этого лучше воспользоваться формулой:

Решение задач по эконометрике в Excel

Сначала выполните следующие действия в ячейках G 15:G19 найдите Решение задач по эконометрике в Excel, а в Н15:Н 19 — Решение задач по эконометрике в Excel. Результаты оформите как показано в таблице 6.2: В ячейке С4 (рис.6.1) находится среднее квадратическое отклонение, которое определяется по формуле 1.3

Решение задач по эконометрике в Excel

ШАГ 2. В столбце «Вероятность» (рис.5.1) находится вероятность попадания случайной величины в соответствующий интервал. Для вычисления этих значений использовалась функция НОРМРАСП. Для первого интервала левым концом является минус бесконечность, поэтому в ячейку С8 запишите формулу:

Решение задач по эконометрике в Excel

Для последнего интервала находим

Решение задач по эконометрике в Excel

поэтому вычисление проводится по формуле:

Решение задач по эконометрике в Excel

Решение задач по эконометрике в Excel

Для вычисления вероятности попадания в интервал воспользуйтесь формулой 2.6:

Решение задач по эконометрике в Excel

Решение задач по эконометрике в Excel

ШАГ 3. Диапазон «Ожидаемая частота» вычисляется как произведение соответствующих значений столбца «Вероятность» на объем выборки (200). ШАГ 4. Столбец представляет собой слагаемые формулы 6.1, вычисляемые по формуле:

Решение задач по эконометрике в Excel

В примере рассматривается пять интервалов, а количество параметров предполагаемого распределения два (среднее и стандартное отклонение) рассчитывается по выборке, поэтому число степеней свободы (СС) равно двум (5-2-1=2). В ячейки А14:В19 введите формулы согласно рис. 5.2.

Решение задач по эконометрике в Excel

В ячейке В19 делается вывод, что распределение часов работы, выпускаемого товара нормальное, это же подтверждает и р-значение.

Проверка гипотезы о распределении генеральной совокупности но закону Пуассона

Параметром этого распределения является Решение задач по эконометрике в Excel-среднее значение. Поэтому по выборочным данным надо найти Решение задач по эконометрике в Excelи взять его в качестве оценки параметра Решение задач по эконометрике в Excel. Напомним, что дискретная случайная величина, имеющая распределение Пуассона, может принимать неотрицательные целые значения. Рассмотрим использование критерия Хи-квадрат для проверки гипотезы о распределении случайной величины по закону Пуассона на примере.

Пример с решением №5.2.

Проведено наблюдение за числом вызовов такси в праздничные дни. Для этого анализировалось 100 случайно выбранных одно минутных интервалов времени. Число вызовов такси в минуту распределилось следующим образом:

Решение задач по эконометрике в Excel

Решение задач по эконометрике в Excel

Проверить, используя критерий Хи-квадрат, гипотезу о том, что число вызовов согласуется с законом Пуассона с уровнем значимости .

Решение задач по эконометрике в Excel

ШАГ 1. Внесите данные на лист Excel и найдите теоретические частоты (диапазон D2:D7), как показано на рис 5.3.

ШАГ2. Найдите слагаемые формулы 5.1. Для этого скопируйте значения фактических и теоретических частот, как показано на рис. 5.4, в ячейку С12 запишите формулу:

Решение задач по эконометрике в Excel

Решение задач по эконометрике в Excel

Можно сделать вывод о том, что число вызовов такси в праздничные дни имеет распределение Пуассона.

Проверка гипотезы о распределении генеральной совокупности но равномерному закону

Пусть случайная величина Решение задач по эконометрике в Excelраспределена равномерно на отрезке Решение задач по эконометрике в Excelвыборочные данные сгруппируйте по частичным интервалам одинаковой длины и найдите соответствующие частоты. Для каждого интервала вычислите вероятность попадания Решение задач по эконометрике в Excel, а затем теоретические частоты по формуле пр,.

Пример с решением №6.3.

Решение задач по эконометрике в Excel

На рис.6.5 приведена частота появление на остановке автобусов определенного маршрута, имеющих интервал движения, пять минут . Проверьте гипотезу о равномерном законе распределения.

Решение задач по эконометрике в Excel

Решение задач по эконометрике в Excel

При проверке гипотезы, так же как и в случае нормального распределения найдено критическое значение (рис. 5.2) и р-значение, которое характеризует вероятность выполнения гипотезы : можно утверждать, что она выполняется для 90% выборочных данных. В ячейке В15 сделан вывод о том, что гипотеза о равномерном распределении движения автобусов принимается.

Проверка гипотезы о распределении генеральной совокупности но показательному закону

Как и в предыдущих проверках, выборочные данные сгруппируйте и запишите в виде последовательности частичных интервалов и соответствующих им частот. Найдите выборочное среднее значение Решение задач по эконометрике в Excel. Параметр показательного распределения Решение задач по эконометрике в Excel(таблица 6.1) замените оценкой:

Решение задач по эконометрике в Excel

Вероятности попадания случайной величины в интервалы определите с помощью функции ЭКСПРАСП.

Выполните расчеты как показано на рис. 5.6. Столбцы Е, F заполните как в примере 5.1. В столбце вероятность:

В ячейку D4 запишите =ЭКСПРАСП(В4;$Р$19;1);

В ячейку D5 поместите =ЭКСПРАСП(В5;$Р$ 19; 1 )-ЭКСГ1РАСП(A5;$F$ 19; 1), скопируйте её в остальные ячейки столбца D.

Решение задач по эконометрике в Excel

Сравнивая критическое и расчетное значение статистики ХИ-квадрат при 5% уровне значимости, можно сделать вывод, что нет оснований отвергать гипотезу можно считать данные выборки (рис 5.6) распределены по показательному (экспоненциальному) закону распределения.

Решение задач по эконометрике в Excel

Проверка гипотезы о распределении генеральной совокупности но биномиальному закону распределения

Пример с решением №5.4.

В библиотеке отобрано 200 партий по пять книг для обучения студентов в семестре. Каждому студенту было предложено заполнить опросный лист числа повреждений в книге. В итоге был получен вариационный ряд:

Решение задач по эконометрике в Excel

При уровне значимости 5% проверьте гипотезу о биномиальном распределении числа повреждений в книгах.

Биномиальное распределение имеет один неизвестный параметр — Решение задач по эконометрике в Excel, который надо оценить Решение задач по эконометрике в Excelпо выборочным данным. Проведем все расчеты в Excel (рис. 5.7).

Решение задач по эконометрике в Excel

Выделенные ячейки следует объединить в одну группу, тогда количество рассматриваемых интервалов равно четырем.

Относительная частота находится по формуле

Решение задач по эконометрике в Excel

Прежде чем перейти к столбцу вероятность найдите оценку Решение задач по эконометрике в Excelпараметра Решение задач по эконометрике в Excel, используя формулы рис. 5.8.

Решение задач по эконометрике в Excel

Столбец вероятность заполните с помощью формул :

Решение задач по эконометрике в Excel

Остальные ячейки заполняем, копируя полученную формулу.

Вывод: можно считать число повреждений в книге подчиняется биномиальному закону распределения.

Использование статистики ХИ-квадрат для изучения зависимостей двух переменных

Решение задач по эконометрике в Excel

Одним из приложений критерия является его использование при анализе таблиц сопряженности двух переменных для установления факта наличия и уровня значимости их взаимосвязи. Для этого выдвигается нулевая гипотеза: связи между рассматриваемыми переменными нет, в противном случае связь между переменными существует с уровнем значимости альфа.

Пример с решением №5.5.

Компания продает четыре сорта колы в Москве. Чтобы определить, будет ли успешным тот же способ распространения в Ростове и Краснодаре, фирма анализирует связь между предпочтениями и городом потребителя. Аналитик распределяет покупателей на четыре класса по предпочтениям сортов колы: обычная, без кофеина и сахара, только без кофеина, только без сахара. Опрашивают 250 случайно выбранных потребителей колы из трех городов и записывают их предпочтения. В результате получается таблица частот.

Решение задач по эконометрике в Excel

Решение задач по эконометрике в Excel

Так как аналитик определяет связь между городом и предпочтением определенного вида колы, то нулевая и альтернативная гипотезы следующие: : Классификации статистически независимы.

Решение задач по эконометрике в Excel

Классификации зависимы.

На лист Excel поместим данные о распространении сортов кофе в диапазон В5:Е7 (рис 6.8). Расчет ожидаемых частот проводится в предположении, что нулевая гипотеза выполняется, то есть переменные независимые, а значит вероятность их произведения равна произведению вероятностей каждой их них. Поэтому таблица ожидаемых частот строится по формуле:

Решение задач по эконометрике в Excel

Ожидаемые частоты поместите в диапазон В12:Е 14. Для их вычисления, воспользуйтесь смешанной и абсолютной ссылками на ячейки сумма по строке, сумма по столбцу, общая сумма. Результаты вычисления приведены на рис. 6.9.

Для сравнения ожидаемых и фактических частот воспользуемся ХИ2ТЕСТОМ (рис. 5.8). В ячейку В17 внесите формулу:

Решение задач по эконометрике в Excel

Получите р-значение равное 0,00000013, которое определяет вероятность выполнения нулевой гипотезы. Можно сделать вывод, что нулевая гипотеза отвергается, то есть люди из разных городов предпочитают различные сорта колы.

Проверим эту же гипотезу с помощью статистики ХИ-квадрат. Слагаемые формулы 6.1 найдем с помощью Фактических и Ожидаемых частот. Для этого в ячейку В21 введите формулу:

Решение задач по эконометрике в Excel

и скопируйте её для всего диапазона B21:F23 (рис.5.9).

Решение задач по эконометрике в Excel

  • Сумму слагаемых ХИ-квадрат поместите в ячейку В25 (рис.5.9).
  • В ячейке В27 задайте уровень значимости (альфа равно 0,01).
  • Число степеней свободы (СС) найдите по формуле:

Решение задач по эконометрике в Excel

  • Критическое значение (В29) найдем с помощью

Решение задач по эконометрике в Excel

  • В ячейку ВЗО помести функцию:

Решение задач по эконометрике в Excel

Решение задач по эконометрике в Excel

Так как ХИ-квадрат больше критического значения, то принимается гипотеза .

Решение задач по эконометрике в Excel

Критерии Колмогорова-Смирнова

Этот критерий является альтернативой критерию ХИ-квадрат. Его применение не требует вычисления ожидаемых частот и может использоваться для малых выборок. Данные должны представлять случайную выборку и обязательно должна быть сформулирована гипотеза о распределении генеральной совокупности. Нулевая гипотеза утверждает, что генеральная совокупность имеет выбранное распределение с определенным уровнем значимости.

Применение критерия Колмогорова-Смирнова основано на оценке разности функции накопленных частот Решение задач по эконометрике в Excelи функции распределения Решение задач по эконометрике в Excel, найденной в предположении, что нулевая гипотеза верна. Статистика критерия вычисляется по формуле:

Решение задач по эконометрике в Excel

где Решение задач по эконометрике в Excel— функция накопленных частот для Решение задач по эконометрике в Excel-того значения или интервала; Решение задач по эконометрике в Excel— функция распределения в точке Решение задач по эконометрике в Excel.

Решение задач по эконометрике в Excel

Если D больше критического значения, взятого из таблицы соответствующего критерия для объема выборки п и уровня значимости , то нулевая гипотеза отклоняется. В противном случае нулевая гипотеза принимается. Для большого объема выборки используется предельное распределение критерия.

Если необходимо проверить нулевую гипотезу о принадлежности двух выборок (объема Решение задач по эконометрике в Excelи Решение задач по эконометрике в Excel) одной и той же генеральной совокупности, то строится статистика:

Решение задач по эконометрике в Excel

Решение задач по эконометрике в Excel

где — функции накопленных частот, построенные по первой и второй выборкам соответственно;

Решение задач по эконометрике в Excel

Решение задач по эконометрике в Excel

Статистика сравнивается с критическим значением значения которой находятся по таблице критических точек распределения Колмогорова:

Решение задач по эконометрике в Excel

Пример с решением №6.1.

Получена случайная выборка о среднем дневном заработке, руб/день, для пяти работников: 288, 231, 249, 146, 291. можно ли считать на 10% уровне значимости, что выборка проведена из нормально распределенной генеральной совокупности со средним значением

Решение задач по эконометрике в Excel

Решение задач по эконометрике в Excel: выборка взята из нормально распределенной генеральной совокупности с Решение задач по эконометрике в ExcelРешение задач по эконометрике в Excel

Решение задач по эконометрике в Excelнет оснований утверждать, что выборка взята из нормально распределенной генеральной совокупности с Решение задач по эконометрике в Excel. Вычисления проведем в Excel, как показано на рис.6.1.

Решение задач по эконометрике в Excel

ШАГ 1. Заполните диапазон А5:А9 выборочными данными и отсортируйте их по возрастанию.

ШАГ 2. Найдите относительные частоты для перечисленных вариант и поместите их в столбец В.

ШАГ 3. Для определения значений функции накопленных частот в ячейку С5 внесите формулу: = В5, в ячейку С6 запишите: =С5+В6 и скопируйте её для ячеек диапазона С7:С9.

ШАГ 3. Для заполнения столбца D, внесите в ячейку D5 формулу:

Решение задач по эконометрике в Excel

и скопируйте её на остальные ячейки диапазона D6: D9.

ШАГ 4. В ячейку Е5 внесите формулу: =ABS(C5-D5) и скопируйте для остальных ячеек диапазона Е5:Е9

ШАГ 5. Найдите максимальное значение статистики D и сравните с критическим, взятым из таблицы при уровне значимости 10% и числе степеней свободы равном пяти. Сравнивая эти можно сделать вывод, что выборка взята из нормально распределенной генеральной совокупности с

Решение задач по эконометрике в Excel

Линейная регрессия и корреляция

Регрессия и корреляция широко используется при анализе связей между явлениями. Прежде всего, в экономике — исследование зависимости объемов производства от целого ряда факторов: размера основных фондов, обеспеченности предприятия квалифицированным персоналом и других; зависимости спроса или потребления населения от уровня дохода, цен на товары и т.д. Экономические показатели являются многомерными случайными величинами.

В большинстве случаев между переменными, характеризующими экономические величины, существуют зависимости, отличающиеся от функциональных. Она возникает, когда один из факторов зависит не только от другого, но и от ряда случайных условий, оказывающих влияние на один или оба фактора. В этом случае ее называют стохастической (корреляционной) и говорят, что переменные коррелируют. Виды стохастических связей между факторами могут быть линейными и нелинейными, положительными или отрицательными. Возможна такая ситуация, когда между факторами невозможно установить какую-либо зависимость.

Однако при изучении влияния одного явления на другое удобно работать именно с функциями, связывающими эти явления. Задачи построения функциональной зависимости между факторами, анализа полученных результатов и прогнозирования решаются с помощью регрессионного анализа.

В пособии приводятся решения задач содержащих небольшое количество данных, для того чтобы пользователь мог быстро ввести значения в таблицу Excel. Каждое решение содержит подробную инструкцию. Сначала рассмотрите пример и проверьте результаты. Затем примените пошаговые инструкции к собственному множеству данных.

Корреляционная зависимость

Для изучения зависимости между двумя числовыми переменными ( Решение задач по эконометрике в Excelи Решение задач по эконометрике в Excel) сначала строят графики рассеяния. В Excel данный вид графиков называется точечной диаграммой. Используя графическое представление, можно сделать вывод о корреляционной зависимости или независимости рассматриваемых данных. Если в массиве данных присутствуют «выбросы», то их следует исключить из рассмотрения, если это возможно сделать, или усреднить, используя соседние элементы.

Теперь можно выдвинуть предположение о существовании линейной или нелинейной зависимости между переменными. Для этого найдите коэффициент корреляции и проверьте его значимость.

Решение задач по эконометрике в Excel

Тесноту линейной зависимости изучаемых явлений оценивает линейный коэффициент парной корреляции :

Решение задач по эконометрике в Excel

Решение задач по эконометрике в Excel

где обозначают смешенный момент второго порядка (1.5), который называется ковариацией.

Ковариация является мерой взаимосвязи случайных величин и может служить для определения направления их изменения:

Решение задач по эконометрике в Excel

если , то случайные величины изменяются в одном направлении;

Решение задач по эконометрике в Excel

если , то случайные величины изменяются в разных направлениях.

Очевидными свойствами ковариации являются:

  • симметричность ковариации относительно случайных чисел: Решение задач по эконометрике в Excel;
  • Решение задач по эконометрике в Excel;
  • если СВ Решение задач по эконометрике в Excelи Решение задач по эконометрике в Excelнезависимые, то Решение задач по эконометрике в Excel.

Коэффициент корреляции (1.1) является величиной безразмерной. Случайные величины Решение задач по эконометрике в Excelи Решение задач по эконометрике в Excelназывают некоррелированными, если Решение задач по эконометрике в Excel(отсутствует линейная зависимость между Решение задач по эконометрике в Excelи Решение задач по эконометрике в Excel), в противном случаем можно говорить о линейной зависимости между величинами Решение задач по эконометрике в Excelи Решение задач по эконометрике в Excel, а величины называю коррелированными. Свойства коэффициента корреляции:

Решение задач по эконометрике в Excel

В пакете Анализ данных есть инструменты Ковариации и Корреляция, позволяющие сделать вывод о линейной зависимости случайных величин.

Пример с решением №7.1.

Для анализа зависимости объема потребления Решение задач по эконометрике в Excel(у.е.) хозяйств от располагаемого ежемесячного дохода Решение задач по эконометрике в Excel(у.е.) отобрана выборка Решение задач по эконометрике в Excel, представленная таблицей.

Решение задач по эконометрике в Excel

Постройте график рассеяния и сделайте вывод о виде функциональной зависимости между объемом потребления и ежемесячным доходом в семье.
Инструкции по выполнению задания

  1. Расположите данные в столбцах таблицы так, чтобы значения х были слева, а у справа (рис. 1.1).
  2. Выделите диапазон ячеек.
  3. Щелкните мышью по кнопке Мастер диаграмм и выберите тип Точечная. Для форматирования диаграммы удобно использовать контекстное меню, которое вызывается щелчком правой кнопки мыши на форматируемом объекте.
  4. Дайте название диаграмме Корреляционное поле.
  5. Расположите диаграмму на листе, содержащем данные, как показано на рис.

Применим встроенную функцию КОРРЕЛ(диапазон Решение задач по эконометрике в Excel; диапазонРешение задач по эконометрике в Excel) для установления линейной зависимости между переменными (рис. 1.1). Найденный коэффициент корреляции 0,99 свидетельствует о сильной линейной зависимости между объёмом потребления и уровнем доходов в семье.

Проверим значимость коэффициента корреляции. Для этого сформулируем основную и альтернативную гипотезы:

Решение задач по эконометрике в Excel: Решение задач по эконометрике в Excel, коэффициент незначимый;

Решение задач по эконометрике в Excel

, коэффициент значимый.

Решение задач по эконометрике в Excel

Для проверки гипотезы воспользуемся -критерием и уровнем значимости 5%,

Решение задач по эконометрике в Excel

Сравнивая эти значения, сделаем вывод о том, что основная гипотеза отклоняется в пользу альтернативной, т.е. коэффициент корреляции значим. По расположению точек на рис. 1.1 можно предположить, что между Решение задач по эконометрике в Excelи Решение задач по эконометрике в Excelсуществует линейная зависимость:

Решение задач по эконометрике в Excel

Решение задач по эконометрике в Excel

Корреляционный анализ данных

При выполнении многомерного анализа данных изучают корреляцию между каждой парой переменных. Эти результаты представляют в виде корреляционной матрицы. Инструмент анализа Корреляция позволяет определить парные корреляции для многих переменных. После его запуска получится нижняя треугольная часть матрицы, на диагонали которой будут стоять единицы Решение задач по эконометрике в Excel. Верхняя часть матрицы является зеркальным отражением нижней ее части, поскольку Решение задач по эконометрике в Excel.

Если надо изучить зависимость между переменными при условии управления одной или несколькими переменными, то находят коэффициенты частной корреляции. Частные коэффициенты корреляции могут оказаться полезными при определении ложных связей.

Например, изучается зависимость Решение задач по эконометрике в Excel. Коэффициенты парной корреляции между Решение задач по эконометрике в Excelи Решение задач по эконометрике в Excelвысокие, однако зависимость будет считаться ложной, если Решение задач по эконометрике в Excelлинейно зависит от Решение задач по эконометрике в Excel. Если исключить влияние переменной Решение задач по эконометрике в Excel, то корреляционная зависимость между Решение задач по эконометрике в Excelи Решение задач по эконометрике в Excelможет исчезнуть,

Надо найти частные коэффициенты корреляции, т.е. элиминировать один из факторов (устранить его влияние). В случае трех факторов корреляцию между Решение задач по эконометрике в Excelи Решение задач по эконометрике в Excelпри элиминированном факторе Решение задач по эконометрике в Excelможно найти по формуле:

Решение задач по эконометрике в Excel

Подобным образом находят и остальные коэффициенты частной корреляции.

Пример с решением №7.2.

Формируется три портфеля из десяти акций. Первый состоит из 10 акций вида Решение задач по эконометрике в Excel, второй содержит по 5 акций Решение задач по эконометрике в Excelи Решение задач по эконометрике в Excel; а третий включает 5 акций вида Решение задач по эконометрике в Excel, 3 вида Решение задач по эконометрике в Excelи 2 вида Решение задач по эконометрике в Excel. Данные о прибыли по каждому виду акций за десять месяцев представлены на рис 1.3.

Имеется ли зависимость между акциями Решение задач по эконометрике в Excel, Решение задач по эконометрике в Excelи Решение задач по эконометрике в Excel? Отличаются ли данные портфели по доходности и риску?

Инструкции по выполнению задания

  1. Введите данные в ячейки A1: C11, как показано на рис. 1.2.
  2. В меню сервис выберите Анализ данных / инструмент Корреляция. Заполните поля диалогового окна, как показано на рис. 1.3. и нажмите ОК.
  3. Аналогично найдите матрицу парных ковариаций.

Коэффициенты корреляции не очень высокие:

Решение задач по эконометрике в Excel

Акции плохо коррелируют между собой, то есть между дивидендами по акциям существует слабая линейная зависимость.

Так как коэффициент ковариации для дивидендов по акциям Решение задач по эконометрике в Excelи Решение задач по эконометрике в Excelотрицательный, то прибыль по ним будет изменяться в разных направлениях (при увеличении дивидендов по акциям Решение задач по эконометрике в Excelдивиденды по акциям Решение задач по эконометрике в Excelбудут уменьшаться). Правда, эти изменения не очень велики, около 10%.

Решение задач по эконометрике в Excel

Если рынок ценных бумаг устойчивый, то желательно исключить акции вида Решение задач по эконометрике в Excelиз портфеля, так как Решение задач по эконометрике в Excelнаибольшая, а значит риск в их вложение высокий.

Акции Решение задач по эконометрике в Excelи Решение задач по эконометрике в Excelкоррелируют слабо Решение задач по эконометрике в Excel, поэтому есть основания считать, что вложение капитала в равных долях в эти акции будет наименее рискованным. Для более правильного вывода надо вычислить дисперсии для каждого портфеля и сравнить их.

Читайте также:  Как построить динамический график с анимацией в Excel

Дисперсии для первого портфеля :

Решение задач по эконометрике в Excel

Решение задач по эконометрике в Excel

Решение задач по эконометрике в Excel

Третий портфель имеет дисперсию:

Решение задач по эконометрике в Excel

Вывод: наименьший риск получается при покупке акций Решение задач по эконометрике в Excelи Решение задач по эконометрике в Excelв равных долях.

Чтобы принять окончательное решение надо построить множество Парето, характеризующее зависимость доходности портфеля от его риска, т.е. математического ожидания и дисперсии:

Решение задач по эконометрике в Excel

Построение тренда для двух рядов данных

Задача построения функциональной зависимости может быть выполнена с помощью команды Добавить линию тренда. В этом случае необходимо визуально исследовать зависимость между х и у и выбрать график элементарной функции, который даст лучшее приближение к экспериментальным данным. Форматирование графиков выполняется с помощью меню Диаграмма. Напомним, что форматируемый объект должен быть выделен.

Существуют и другие способы форматирования: контекстное меню — вызывается для объекта с помощью правой клавиши мыши.

Прежде всего, надо исследовать корреляционное поле и сделать вывод о характере зависимости между переменными. Затем выполните действия (тренд построен для данных примера 1.1):

Решение задач по эконометрике в Excel

  1. На диаграмме (рис. 1.1) выделите маркеры, щелкнув по любой из точек данных.
  2. В меню диаграмма выберите Добавить линию тренда (можно воспользоваться контекстным меню).
  3. Перейдите на вкладку Тип диалогового окна Линия тренда, как показано на рис. 1.5 и выделите пиктограмму Линейный.
  4. Откройте вкладку Параметры (рис. 1.6) включите опции Показывать уравнение на диаграмме и Поместить на диаграмму величину достоверности аппроксимации .

Решение задач по эконометрике в Excel

На вкладке параметры имеются и другие типы функциональных зависимостей. Предлагается самостоятельно построить остальные виды тренда и записать их уравнения. Не забывайте включать опции из пункт 4, приведенной выше инструкции.

Инструмент анализа регрессия

Дает возможность провести более полный анализ, полученного уравнения линейного тренда с использованием методов математической статистики.

Коэффициенты уравнения линейной регрессии находятся по выборочным данным и являются величинами случайными, поэтому надо провести анализ их значимости (значимости). Надо определить значимость всего уравнения регрессии и самое главное построить прогноз по построенному уравнению, а затем провести его оценку значимости.

При построении линейного тренда предполагается, что линейная модель наилучшим образом характеризует зависимость между Решение задач по эконометрике в Excelи Решение задач по эконометрике в Excel:

Решение задач по эконометрике в Excel

где Решение задач по эконометрике в Excelи Решение задач по эконометрике в Excelпараметры модели; Решение задач по эконометрике в Excel— случайная величина (возмущение), характеризующая влияние неучтенных факторов.

Решение задач по эконометрике в Excel

Уравнение прямой (1.2), коэффициенты которого находят по выборочным данным, называют уравнением регрессии и обозначают :

Решение задач по эконометрике в Excel

Коэффициенты регрессии Решение задач по эконометрике в Excelи Решение задач по эконометрике в Excelнаходят по методу наименьших квадратов. Они являются только оценками параметров модели (соответственно Решение задач по эконометрике в Excelи Решение задач по эконометрике в Excel). Для получения наилучших оценок необходимо, чтобы выполнялся ряд предпосылок относительно случайного отклонения

Решение задач по эконометрике в Excel

Решение задач по эконометрике в Excel

индекс означает значение факторов в одноименном испытании. Это условия Гаусса-Маркова (Приложение 1), а так же предположения:

• случайные отклонения имеют нормальный закон распределения;

• отсутствуют ошибки спецификации;

• число наблюдений достаточно большое: как минимум в шесть раз превышает число объясняющих факторов и другие.

Решение задач по эконометрике в Excel

Оценку называют коэффициентом регрессии. Ее значение показывает среднее изменение результата у с изменением фактора х на одну единицу.

Можно установить зависимость между коэффициентом регрессии и коэффициентом корреляции:

Решение задач по эконометрике в Excel

Решение задач по эконометрике в Excel

В качестве меры рассеивания фактического значения у относительно теоретического значения (находится по уравнению регрессии) используется стандартная ошибка уравнения регрессии, которая определяется по формуле:

Решение задач по эконометрике в Excel

Оценка качества полученного уравнения регрессии содержит следующие пункты:

Решение задач по эконометрике в Excel

  • Оценка значимости коэффициентов регрессии;
  • Построение доверительных интервалов для каждого коэффициента;
  • Оценка значимости всего уравнения регрессии;
  • Построение прогнозного значения и доверительного интервала к ним. Для определения статистической значимости коэффициентов регрессии и корреляции необходимо рассчитать -статистики Стьюдента лучше всего это сделать с помощью встроенной функции СТЬДРАСПОБР [1].

Оценка значимости коэффициентов регрессии и корреляции

Устанавливает надежность полученных результатов. Случайные ошибки коэффициента корреляции и оценок параметров линейной модели вычисляются по формулам:

Решение задач по эконометрике в Excel

Решение задач по эконометрике в Excel

стандартное отклонение коэффициента .

Решение задач по эконометрике в Excel

Решение задач по эконометрике в Excel

стандартное отклонение коэффициента .

Решение задач по эконометрике в Excel

стандартное отклонение коэффициента корреляции.

Любое стандартное отклонение иногда называют стандартной ошибкой соответствующего коэффициента.

Рассматривается основная гипотеза о равенстве параметров регрессии нулю.

Решение задач по эконометрике в Excel— коэффициент незначим; Решение задач по эконометрике в Excel— коэффициент значимый По выборке находятРешение задач по эконометрике в Excel-статистики Решение задач по эконометрике в Excel:

Решение задач по эконометрике в Excel

Критическое значение Решение задач по эконометрике в Excelдля Решение задач по эконометрике в Excel-статистик находят с помощью распределения Стьюдента. Для этого надо знать объем выборки и задать уровень значимости Решение задач по эконометрике в Excel. Например, для

Решение задач по эконометрике в Excel

  • принимается, если выполняется неравенство Решение задач по эконометрике в Excelи делают вывод, что коэффициент незначим (равен нулю);
  • отвергается, если Решение задач по эконометрике в Excelи делают вывод, что коэффициент значим. Более подробно о проверке гипотез можно прочитать в первой части методических указаний.

Часто при проверке качества коэффициентов используют «грубое правило»:

Решение задач по эконометрике в Excel

• если то коэффициент статистически незначим;

Решение задач по эконометрике в Excel

• если , то коэффициент относительно слабо значим, рекомендуется воспользоваться таблицей критических точек распределения Стьюдента;

• если Решение задач по эконометрике в Excel, то коэффициент значим (это утверждение считается гарантированным при Решение задач по эконометрике в Excel);

Решение задач по эконометрике в Excel

• если , то коэффициент считается сильно значимым (вероятность ошибки при достаточном числе наблюдений не превосходит 0,001).

Каждая оценка дополняется доверительным интервалом. Для этого определяют предельную ошибку [1] для каждого коэффициента:

Решение задач по эконометрике в Excel

откуда границы доверительных интервалов находятся по формуле:

Решение задач по эконометрике в Excel

Коэффициент детерминации для парной регрессии совпадает с квадратом коэффициента корреляции Решение задач по эконометрике в Excelи характеризует долю дисперсии результативного признака Решение задач по эконометрике в Excel, объясняемую регрессией в общей дисперсии результативного при-знака. Соответственно величина Решение задач по эконометрике в Excelхарактеризует долю дисперсии у, вызванную влиянием неучтенных факторов в общей дисперсии признака Решение задач по эконометрике в Excel.

Решение задач по эконометрике в Excel

Разделив обе части уравнения на общую сумму квадратов отклонений, получим:

Решение задач по эконометрике в Excel

Таким образом, коэффициент детерминации Решение задач по эконометрике в Excelявляется мерой, позволяющей определить, в какой степени найденная прямая регрессии дает лучший результат для объяснения поведения зависимой переменной Решение задач по эконометрике в Excel, чем горизонтальная прямая Решение задач по эконометрике в Excel. Очевидно, что Решение задач по эконометрике в Excel. Откуда следует, что чем ближе он к единице, тем больше уравнение регрессии объясняет поведение фактических значений Решение задач по эконометрике в Excel. Поэтому хотелось бы стремятся построить регрессию с наибольшим значением Решение задач по эконометрике в Excel.

Решение задач по эконометрике в Excel

Корень квадратный из коэффициента детерминации называется индексом корреляции и обозначают .

Для проверки общего качества уравнения регрессии выдвигается предположение, что коэффициенты Решение задач по эконометрике в Excelи Решение задач по эконометрике в Excelодновременно равны нулю, тогда уравнение считают незначимым, в противном случае значимым. Данная гипотеза проверяется на основе дисперсионного анализа, при этом сравниваются объясненная и остаточная дисперсии:

Решение задач по эконометрике в Excel

— уравнение незначимо,

Решение задач по эконометрике в Excel— уравнение значимо. Строится Решение задач по эконометрике в Excel-статистика:

Решение задач по эконометрике в Excel

При выполнении условий МНК статистика имеет распределение Фишера с числом степеней свободы Решение задач по эконометрике в Excel. При уровне значимости Решение задач по эконометрике в Excelнаходят критичекую точку Решение задач по эконометрике в Excelс помощью функции FHOBP и сравнивают его с наблюдаемым значением Решение задач по эконометрике в Excel. Так как рассматриваемая гипотеза правосторонняя [1], то:

■ если Решение задач по эконометрике в Excelто гипотеза Решение задач по эконометрике в Excelотклоняется в пользу Решение задач по эконометрике в Excelчто означает объясненная дисперсия существенно больше остаточной, следовательно, уравнение регрессии достаточно качественно отражает динамику изменения зависимой переменной от объясняющей.

■ если Решение задач по эконометрике в Excel, то гипотеза Решение задач по эконометрике в Excelпринимается, т.е. объясненная дисперсия соизмерима с остаточной дисперсией, вызванной случайными факторами. Это позволяет считать влияние объясняющих переменных модели несущественным, а следовательно, общее качество уравнения регрессии невысоким.

В случае линейной регрессии проверка нулевой гипотезы для Решение задач по эконометрике в Excel-статистики равносильна проверке нулевой гипотезы для Решение задач по эконометрике в Excel-статистики для коэффициента корреляции:

Решение задач по эконометрике в Excel

Можно доказать равенство:

Решение задач по эконометрике в Excel

Решение задач по эконометрике в Excel

Самостоятельную значимость коэффициент приобретает в случае множественной регрессии.

Поиск прогнозного значения и его оценка

Прогнозное значение Решение задач по эконометрике в Excelопределяется, если в уравнение регрессии подставить значение Решение задач по эконометрике в Excel:

Решение задач по эконометрике в Excel

Решение задач по эконометрике в Excel

Границы доверительного интервала для параметра будут равны:

Решение задач по эконометрике в Excel

Чтобы найти стандартную ошибку Решение задач по эконометрике в Excelпрогнозного значения Решение задач по эконометрике в Excelможно использовать два подхода: либо рассматривать параметр Решение задач по эконометрике в Excelкак отдельное значение переменной Решение задач по эконометрике в Excel; или разброс Решение задач по эконометрике в Excelнайти как условное среднее значение при известном значении Решение задач по эконометрике в Excel.

Доверительный интервал для отдельного значения Решение задач по эконометрике в Excelучитывает источники рассеяния: для коэффициентов регрессии (1.5, 1.6) и всего уравнения регрессии (1.4). В этом случае стандартная ошибка прогноза Решение задач по эконометрике в Excelвычисляется по формуле:

Решение задач по эконометрике в Excel

Доверительный интервал для условного среднего не учитывает дисперсию для всего уравнения регрессии (1.4), поэтому формула для вычисления ошибки прогноза имеет вид:

Решение задач по эконометрике в Excel

Пример с решением №7.3.

Воспользуемся данными примера 1.1 для выполнения следующих заданий:

Решение задач по эконометрике в Excel

  1. по данным выборок постройте линейную модель ;

Решение задач по эконометрике в Excel

a. оценить параметры уравнения регрессии ;

b. оценить статистическую значимость коэффициентов регрессии;

c. оценить силу линейной зависимости между Решение задач по эконометрике в Excelи Решение задач по эконометрике в Excel;

Решение задач по эконометрике в Excel

d. спрогнозируйте потребление при доходе .

Решение задач по эконометрике в Excel

  1. постройте модель, не содержащую свободный член .

Решение задач по эконометрике в Excel

a. найдите коэффициент регрессии ,

Решение задач по эконометрике в Excel

b. оценить статистическую значимость коэффициента ;

c. оценить силу общее качество уравнения регрессии;

Решение задач по эконометрике в Excel

  1. значимо или нет различаются коэффициенты на?
  2. какую модель вы выбираете?

Инструкции для выполнения примера с помощью инструмента Регрессия пакета анализ.

  1. Наберите исходные данные на лист Excel, как и раньше по столбцам (рис 1.1).
  2. Найдите инструмент Регрессия в пакете Анализ данных и нажмите ОК. появится диалоговое окно (рис. 1.8)
  3. Входной интервал Решение задач по эконометрике в Excel: введите ссылки на значения переменной Решение задач по эконометрике в Excel, включая метки диапазона.
  4. Входной интервал Решение задач по эконометрике в Excel: введите ссылки на значения переменной Решение задач по эконометрике в Excel, включая метки диапазона.
  5. Включите опцию Метки.
  6. Включите опцию Уровень надежности и введите в поле значение 98.
  7. Установите параметр вывода результатов, имя ячейки.
  8. Включите опцию вывод остатков для получения теоретических значений Решение задач по эконометрике в Excel.
  9. Нажмите ОК.
  10. Появятся итоговые результаты (рис 1.9).
  11. Выделите диапазон Вывод остатков и перенесите его, как показано на рис. 1.9.

Решение задач по эконометрике в Excel

Все оценки по умолчанию проводятся в excel с уровнем значимости

Описание результатов поданным примера 1.1

Рисунок 1.9. состоит из четырех блоков: Регрессионная статистика, Дисперсионный анализ, данных для коэффициентов регрессии и их оценок, вывод остатков. Опишем более подробно полученные результаты.

Регрессионная статистика содержит строки, характеризующие построенное уравнение регрессии:

Для парной регрессии Множественный Решение задач по эконометрике в Excelравен коэффициенту корреляции Решение задач по эконометрике в Excel. По его значению 0,9952 можно сказать, что между Решение задач по эконометрике в Excelи Решение задач по эконометрике в Excelсуществует сильная линейная зависимость.

Строка Решение задач по эконометрике в Excel-квадрат равна коэффициенту корреляции в квадрате. Нормированный Решение задач по эконометрике в Excel-квадрат рассчитывается с учетом степеней свободы числителя Решение задач по эконометрике в Excelи знаменателя Решение задач по эконометрике в Excelпо формуле 1.11. Более подробно свойства этого коэффициента будут рассмотрены в разделе множественная линейная регрессия. Стандартная ошибка Решение задач по эконометрике в Excelрегрессии вычисляется по формуле 1.4. Последняя строка содержит количество выборочных данных Решение задач по эконометрике в Excel.

Решение задач по эконометрике в Excel

Решение задач по эконометрике в Excel

Дисперсионный анализ

Он позволяет исследовать общую дисперсию у (строка ИТОГО), дисперсию для теоретических данных (строка Регрессия) и остаточную дисперсию (строка Остаток).

Решение задач по эконометрике в Excel

Второй столбец содержит число степеней свободы для каждой из сумм формулы 1.11*.

Решение задач по эконометрике в Excel

В третьем столбе находятся суммы квадратов (1.11*).

Четвертый столбец Решение задач по эконометрике в Excelсодержит средние значения Решение задач по эконометрике в Excelдля регрессии и остатков.

В пятом столбце вычисляется по выборочным данным значение статистика alt=»Решение задач по эконометрике в Excel» width=»» />(1.12). Последний столбец, содержит alt=»Решение задач по эконометрике в Excel» width=»» />-значение равное

Решение задач по эконометрике в Excel

Решение задач по эконометрике в Excel

с уровнем значимости 0,05. С его помощью можно оценить значимость всего уравнения регрессии. Это значение можно считать вероятностью выполнения гипотезы . В нашем случае она практически равна нулю, следовательно, построенное уравнение дает хорошее приближение к исходным данным.

Построение уравнения регрессии и оценка значимости ее коэффициентов

Этот блок состоит из трех строк:

названия столбцов — первая строка

Решение задач по эконометрике в Excel— пересечение — содержит все характеристики для коэффициента Решение задач по эконометрике в Excel; третья строка Решение задач по эконометрике в Excelсодержит все характеристики для коэффициента Решение задач по эконометрике в Excel. В столбце коэффициенты находятся их значения

Решение задач по эконометрике в Excel

используя их можно записать уравнение линейной регрессии:

Решение задач по эконометрике в Excel

Столбец Стандартная ошибка содержит значения

Решение задач по эконометрике в Excel

Решение задач по эконометрике в Excel

В столбце -статистики находятся значения, вычисленные по выборочным данным:

Решение задач по эконометрике в Excel

По «грубому правилу» можно сделать вывод, что Решение задач по эконометрике в Excelсильно значимый коэффициент, а Решение задач по эконометрике в Excelнезначим.

Решение задач по эконометрике в Excel

Подтвердить эти выводы можно с помощью данных столбца -значение. В этом столбе вычисляются вероятности

Решение задач по эконометрике в Excel

которое можно считать вероятностью выполнения гипотезы Решение задач по эконометрике в Excel. Эта вероятность для Решение задач по эконометрике в Excelравна нулю, что подтверждает вывод, сделанный по грубому правилу. Для коэффициента Решение задач по эконометрике в Excelс надежностью 43% случаев можно говорить о его незначимости.

Доверительные интервалы строятся для коэффициентов по умолчанию с доверительной вероятностью 95%. Границы интервалов находятся в столбцах Нижнее 95%, Верхнее 95%:

Решение задач по эконометрике в Excel

Решение задач по эконометрике в Excel

Так как нами была включена опция уровень надежности 98%, то получены доверительные интервалы и для этого значения :

Решение задач по эконометрике в Excel

Описания, приведенные выше, практически позволили ответить на все вопросы задания 1, кроме построения прогнозного значения и доверительного интервала для него. Выполнить это задание можно с помощью блока вывод остатков и функции ТЕНДЕЦИЯ() или непосредственно по формулам (1.14-1.18).

Решение задач по эконометрике в Excel

Прогнозируемое потребление при доходе составит для данной модели:

Решение задач по эконометрике в Excel

Решение задач по эконометрике в Excel

Границы доверительного интервала условного среднего значения (1.17):

Решение задач по эконометрике в Excel

Таким образом, среднее потребление при доходе 160 у.е. с надежностью 95% будет находиться в интервале (152,8993; 15464624).

Решение задач по эконометрике в Excel

Для определения границ интервала, в котором сосредоточено не менее 95% возможных объемов потребления при неограниченно большом числе наблюдений и уровне дохода =160, воспользуемся формулой (1.16):

Решение задач по эконометрике в Excel

Получим границы интервала для прогнозного значения (151,4791; 155,61409). Нетрудно заметить, что он включает в себя интервал для среднего потребления.

Решение задач по эконометрике в Excel

Коэффициент может трактоваться как предельная склонность к потреблению. Фактически он показывает, на какую величину изменится объем потребления, если предполагаемый доход возрастет на единицу.

Свободный член Решение задач по эконометрике в Excelуравнения регрессии определяет прогнозируемое значение Решение задач по эконометрике в Excelпри величине располагаемого дохода Решение задач по эконометрике в Excel, равной нулю (т.е. автономное потребление). В нашем примере Решение задач по эконометрике в Excel=2,9992 говорит о том, что при нулевом располагаемом доходе расходы на потребление составят 2,99992 у.е. Это можно объяснить для отдельных хозяйств (каждое может тратить накопленные или одолженные деньги), но для совокупности хозяйств коэффициент теряет смысл.

Следует помнить, что полученное уравнение регрессии отражает лишь общую тенденцию в поведении рассматриваемых переменных. Индивидуальные значения могут отклоняться от модельных.

Решение задач по эконометрике в Excel

Рассмотрим модельное уравнение, не содержащее свободного члена:

Решение задач по эконометрике в Excel

тогда соответствующее ему уравнение регрессии:

Решение задач по эконометрике в Excel

Проведем исследование этого уравнения, так же как и в задании 1. Запустим инструмент Регрессия. Для заполнения полей диалогового окна (рис. 1.8) повторите действия 3 — 6 из задания 1; обязательно включите опцию Константа ноль и измените параметры выходного интервала так, чтобы вывод итогов задания 1 и задания 2 не пересекались.

Вывод итогов в этом случае представлен на рис 1.12. Строка, соответствующая свободному члену уравнения, содержит запись #Н/Д, так как он отсутствует в уравнении.

Решение задач по эконометрике в Excel

Проведите описание результатов самостоятельно для полученного уравнения регрессии также как в задании 1.

Обратите внимание, что столбцы Верхнее 95% и Нижнее 95% повторяются, так как опция уровень надежности отключена.

Проверим значимо или нет, различаются коэффициенты Решение задач по эконометрике в Excelи Решение задач по эконометрике в Excel. Для этого сформулируем гипотезу о равенстве математических ожиданий:

Решение задач по эконометрике в Excel— коэффициенты совпадают, значимого различия нет; Решение задач по эконометрике в Excel— коэффициенты различаются значимо.

Для проверки гипотезы построим статистику

Решение задач по эконометрике в Excel

Сравним наблюдаемое значение с критическим при уровне значимости Решение задач по эконометрике в Excelи числом степеней свободы Решение задач по эконометрике в Excel.

Найдем критическое значение с помощью встроенной функции Стьюдента Решение задач по эконометрике в Excel. Поскольку Решение задач по эконометрике в Excel, то нет оснований для отклонения нулевой гипотезы. Это дает основания утверждать, что различия в коэффициентах незначимо.

Необходимо сравнить коэффициенты детерминации двух уравнений, значения которых возьмите из отчетов Вывод Итогов (рис. 1.9, рис. 1.10):

для первого уравнения

Решение задач по эконометрике в Excel

для второго уравнения

Решение задач по эконометрике в Excel

Так как для первого уравнения это значение больше, чем для второго, то можно предположить, что первое уравнение

Решение задач по эконометрике в Excel

описывает поведение зависимой переменной лучше, чем второе

Решение задач по эконометрике в Excel

Решение задач по эконометрике в Excel

так как её коэффициент детерминации больше. Сравнение двух уравнений регрессии с помощью -статистики будет рассмотрено в разделе множественная линейная регрессия.

Решение задач по эконометрике в Excel

Множественная линейная регрессия

Как правило, на изучаемый фактор Решение задач по эконометрике в Excelоказывает влияние не один, а несколько факторов Решение задач по эконометрике в Excel. Например, спрос зависит не только от цены товара, но и от доходов потребителей, а также от цены на замещающие его товары и других факторов.

Пусть зависимая переменная Решение задач по эконометрике в Excelв Решение задач по эконометрике в Excelнаблюдениях определяется m объясняющими факторами Решение задач по эконометрике в Excel, а функциональная зависимость между ними имеет вид линейной модели:

Решение задач по эконометрике в Excel

или для индивидуальных наблюдений Решение задач по эконометрике в Excel,где Решение задач по эконометрике в Excel

Решение задач по эконометрике в Excel

Уравнение регрессии для индивидуальных наблюдений:

Решение задач по эконометрике в Excel

Решение задач по эконометрике в Excel

— вектор неизвестных параметров,

Решение задач по эконометрике в Excel

— вектор оценочных параметров,

Решение задач по эконометрике в Excel

вектор значений зависимой переменной,

Решение задач по эконометрике в Excel— матрица значений независимых переменных, где Решение задач по эконометрике в Excel— значение переменной

Решение задач по эконометрике в Excelв Решение задач по эконометрике в Excel-том наблюдении, Решение задач по эконометрике в Excel— случайные возмущения,

Решение задач по эконометрике в Excelслучайный вектор отклонений теоретических значений Решение задач по эконометрике в Excelот фактических Решение задач по эконометрике в Excel.

Тогда уравнение (1.18) можно записать в матричном виде:

Решение задач по эконометрике в Excel

а так же уравнение (1.20):

Решение задач по эконометрике в Excel

Решение задач по эконометрике в Excel

Чтобы найти коэффициенты линейной регрессии (1.20), надо решить уравнение (1.22) относительно матрицы В. Для этого умножают обе части матричного уравнения (1.22) на транспонированную матрицу и из полученного уравнения:

Решение задач по эконометрике в Excel

Полученное решение справедливо для уравнений регрессии с произвольным количеством объясняющих факторов Решение задач по эконометрике в Excel, где Решение задач по эконометрике в Excelобратная матрица к матрице Решение задач по эконометрике в Excel.

Решение (1.23) уравнения регрессии (1.22) можно найти:

  1. с использованием методов матричной алгебры;
  2. с помощью встроенных функций Excel для работы с массивами: МОБР(), ТРАНСП(), МУМНОЖ();
  3. применить инструмент анализа Регрессия.

Первый способ изучается в курсе Математика и для его реализации необходимо записать все матрицы, характеризующие уравнение 1.23.

Для реализации второго способа коэффициенты этих матриц надо занести на лист Excel, а затем применить правила работы с массивами данных. Необходимо помнить, что матрицы для этих методов имеют вид:

Решение задач по эконометрике в Excel

Матрица Решение задач по эконометрике в Excelв первом столбце содержит единицы, которые являются коэффициентом при неизвестном Решение задач по эконометрике в Excelлинейной регрессии 1.20.

Наиболее простым является последний способ поиска коэффициентов регрессии 1.20. Рассмотрим его применение на примере.

Пример с решением №7.4.

Анализируется объем сбережений Решение задач по эконометрике в Excelнаселения за 10 лет. Предполагается, что его размер Решение задач по эконометрике в Excelв текущем году зависит от величины Решение задач по эконометрике в Excelрасполагаемого дохода Решение задач по эконометрике в Excelв предыдущем году и от величины Решение задач по эконометрике в Excelреальной процентной ставки Решение задач по эконометрике в Excelв рассматриваемом году. Статистические данные приведены в таблице:

Решение задач по эконометрике в Excel

Решение задач по эконометрике в Excel

1) найдите коэффициенты линейной регрессии

2) оцените статистическую значимость найденных коэффициентов регрессии Решение задач по эконометрике в ExcelРешение задач по эконометрике в Excel

3) оцените силу влияния факторов на объем сбережений населения;

4) постройте 95% -е доверительные интервалы для найденных коэффициентов;

5) вычислите коэффициент детерминации Решение задач по эконометрике в Excelи оценить его статистическую значимость при Решение задач по эконометрике в Excel;

6) рассчитайте коэффициенты частной корреляции;

7) определите, какой процент разброса зависимой переменной объясняется данной регрессией;

8) найдите скорректированным коэффициент детерминации Решение задач по эконометрике в Excelи сравните его с коэффициент детерминации Решение задач по эконометрике в Excel.

9) оцените предельную склонность граждан к сбережению. Существенно ли отличается она от 0,5?

10) определите, увеличивается или уменьшается объем сбережений с ростом процентной ставки; будет ли ответ статистически обоснованным;

11) спрогнозируйте средний объем сбережений в 2011 году, если предполагаемый доход составит 270 тыс. руб., а процентная ставка будет равна 5,5%.

12) выводы по качеству построенной модели;

Все расчеты выполним с помощью ППП Excel.

Инструкции для выполнения

  1. Наберите исходные данные на лист Excel, как и раньше по столбцам (рис 1.13).
  2. Найдите инструмент Регрессия в пакете Анализ данных и нажмите Решение задач по эконометрике в Excel, появится диалоговое окно (рис. 1.8)
  3. Входной интервал Решение задач по эконометрике в Excel: введите ссылки на значения переменной в столбце Решение задач по эконометрике в Excel, включая метки диапазона.
  4. Входной интервал Решение задач по эконометрике в Excel: введите ссылки на значения переменной в столбцах Решение задач по эконометрике в Excelи Решение задач по эконометрике в Excel, включая метки диапазона.
  5. Включите опцию Метки.
  6. Включите опцию Уровень надежности и введите в поле значение 99.
  7. Установите параметр вывода результатов, имя ячейки.
  8. Включите опцию вывод остатков для получения теоретических значений Решение задач по эконометрике в Excel.
  9. Нажмите Решение задач по эконометрике в Excel.
  10. Появятся итоговые результаты (рис 1.14).

Решение задач по эконометрике в Excel

Описание результатов уравнение линейной регрессии

Используя столбец Коэффициенты, запишем уравнение регрессии:

Решение задач по эконометрике в Excel

При изменении доходов в предшествующем году на одну тысячу рублей сбережения увеличатся на 120 рублей, если экономическая ситуация будет стабильной. При увеличении процентной ставки на 1% сбережения могут увеличиться на 350 рублей.

Решение задач по эконометрике в Excel

Значимость коэффициентов регрессии

Решение задач по эконометрике в Excel

Значение — статистик находятся в столбце с одноименным названием:

Решение задач по эконометрике в Excel

Используя «грубое правило», можно сделать вывод, что коэффициенты Решение задач по эконометрике в Excelзначимы, так как они превышают значение три. Коэффициент Решение задач по эконометрике в Excelотносительно слабо значим. Убедится в этих выводах можно используя СТЬЮДРАСПОБР(), с помощью которой найдите критические точки и постройте двухстороннюю критическую область. Для различных уровней значимости:

Решение задач по эконометрике в Excel

Этот же вывод получите, если исследуете показания столбца Решение задач по эконометрике в Excel-значение. Коэффициент Решение задач по эконометрике в Excelсущественного влияния на переменную Решение задач по эконометрике в Excelне оказывает, т.е. может быть исключен из модели. Однако, учитывая, что в экономике, свободный член отражает экзогенную среду, лучше его оставить в уравнении регрессии, так как наличие свободного члена в линейном уравнении может только уточнить вид зависимости.

Значение Решение задач по эконометрике в Excel-статистики для коэффициента Решение задач по эконометрике в Excel-пересечение обычно не используется.

Сравнение коэффициентов регрессии

Простое сопоставление коэффициентов регрессии по модулю не может оценить силу влияния факторов на признак у: такое сопоставление лишено смысла. Однако их можно нормировать (стандартизировать), используя формулу:

Решение задач по эконометрике в Excel

где Решение задач по эконометрике в Excel— коэффициент регрессии после нормирования, Решение задач по эконометрике в Excel— стандартная ошибка переменной Решение задач по эконометрике в Excel; Решение задач по эконометрике в Excel— стандартная ошибка переменной Решение задач по эконометрике в Excel.

Нормированные коэффициенты можно сравнивать и делать вывод о влиянии факторов на переменную Решение задач по эконометрике в Excel. Факторы с наименьшим по модулю значением Решение задач по эконометрике в Excelоказывают на Решение задач по эконометрике в Excelнаименьшее влияние.

Уравнение регрессии в стандартизованном масштабе имеет вид:

Решение задач по эконометрике в Excel

это означает, что влияние процентной ставки Решение задач по эконометрике в Excelна объем вкладов Решение задач по эконометрике в Excelменьше, чем влияние уровня доходов за предшествующий период Решение задач по эконометрике в Excel.

Доверительные интервалы для коэффициентов

Находятся в столбцах нижнее/верхнее 95%:

Решение задач по эконометрике в Excel

Можно построить доверительные интервалы с уровнем надежности 97% (Рис. 1.14).

Коэффициент детерминации

Коэффициент детерминации находится по формуле (1.11):

Решение задач по эконометрике в Excel

Он характеризует долю разброса значений зависимой переменной alt=»Решение задач по эконометрике в Excel» width=»» />, объясненной уравнением регрессии. В нашем примере, 98% разброса переменной alt=»Решение задач по эконометрике в Excel» width=»» />объясняется построенным уравнением регрессии.

Скорректированный коэффициент детерминации

Решение задач по эконометрике в Excel

В случае множественной регрессии коэффициент детерминации является неубывающей функцией числа объясняющих переменных, т.е. добавление новой переменной увеличивает значение . Поэтому при расчете коэффициента детерминации для получения несмещенных оценок в числителе и знаменателе формулы 1.11 делается поправка на число степеней свободы. Найденное значение называется скорректированным коэффициентом детерминации:

Решение задач по эконометрике в Excel

Решение задач по эконометрике в Excel— является несмещенной оценкой остаточной дисперсии, т.е. дисперсией случайных отклонений точек наблюдений от линии регрессии. Ее число степеней свободы равно Решение задач по эконометрике в Excel, где Решение задач по эконометрике в Excelстепень свободы связана с необходимостью решения системы Решение задач по эконометрике в Excelлинейного уравнения;

Решение задач по эконометрике в Excel— является несмещенной оценкой общей дисперсии, т.е. дисперсией отклонения Решение задач по эконометрике в Excelот Решение задач по эконометрике в Excel, где одна степень теряется при вычислении Решение задач по эконометрике в Excel.

Заметим, что несмещенная оценка объясненной дисперсии Решение задач по эконометрике в Excel, т.е. дисперсии отклонения точек Решение задач по эконометрике в Excelот Решение задач по эконометрике в Excel, имеет Решение задач по эконометрике в Excelстепеней свободы.

Все суммы можно найти в столбце Решение задач по эконометрике в Excelдисперсионного анализа, их средние значения в столбце Решение задач по эконометрике в Excel, а число степеней свободы в столбце Решение задач по эконометрике в Excelэтого же блока.

Решение задач по эконометрике в Excel

Для нашего примера находится в блоке регрессионная статистика в строке нормированный.

Можно получить формулу, устанавливающую связь между скорректированным коэффициентом детерминации и коэффициентом детерминации:

Решение задач по эконометрике в Excel

Решение задач по эконометрике в Excelдля Решение задач по эконометрике в Excel, Решение задач по эконометрике в Excelтолько при Решение задач по эконометрике в Excel.

Решение задач по эконометрике в Excelможет принимать отрицательные значения (например, если Решение задач по эконометрике в Excel)

Решение задач по эконометрике в Excel

Коэффициент корректируется с ростом числа объясняющих переменных. Доказано, что скорректированный коэффициент корреляции увеличивается при добавлении новой переменной тогда и только тогда, когда — статистика этой переменной по модулю больше единицы. Поэтому добавление в модель новых переменных осуществляется до тех пор, пока он растет.

В пакете Анализ данных приводятся значения Решение задач по эконометрике в Excelи Решение задач по эконометрике в Excel. Значимость коэффициента детерминации и скорректированного коэффициента при исследовании уравнения регрессии большая, однако, не абсолютная. При неправильной спецификации модели можно получить очень высокие значения этих коэффициентов, поэтому Решение задач по эконометрике в Excelи Решение задач по эконометрике в Excelрассматриваются как один из ряда показателей, которые нужно проанализировать, чтобы уточнить строящуюся модель.

Индекс множественной корреляции

Теснота линейной взаимосвязи в линейной регрессии выполняется с помощью индекса корреляции:

Решение задач по эконометрике в Excel

Если Решение задач по эконометрике в Excel— неслучайная величина, то Решение задач по эконометрике в Excelхарактеризует качество подбора уравнения регрессии. Если же Решение задач по эконометрике в Excel— случайная переменная, то индекс корреляции является мерой тесноты линейной взаимосвязи между Решение задач по эконометрике в Excelи набором факторов Решение задач по эконометрике в Excel.

Решение задач по эконометрике в Excel

Для нашего примера находим в строке Множественный рис 1.18.

Коэффициенты частной корреляции

Используются для выделения определяющего фактора и второстепенных. Необходимо определить частные зависимости между Решение задач по эконометрике в Excelи Решение задач по эконометрике в Excel, при условии, что воздействие остальных факторов исключено (элиминировано). В случае трех переменных Решение задач по эконометрике в Excelможно получить коэффициенты парной корреляции Решение задач по эконометрике в Excelпо формулам:

Решение задач по эконометрике в Excel

Воспользуйтесь инструкциями примера 1.2. и найдите коэффициенты парной корреляции для вычисления коэффициентов частной корреляции.

Решение задач по эконометрике в Excel

Анализируя, полученные данные можно сказать, что факторы Решение задач по эконометрике в Excelи Решение задач по эконометрике в Excelдублируют друг друга Решение задач по эконометрике в Excel. Сравнивая их влияние на фактор Решение задач по эконометрике в Excelможно сделать вывод об исключении переменной Решение задач по эконометрике в Excelиз уравнения регрессии, так как Решение задач по эконометрике в Excel. Постройте уравнение регрессии, не содержащее фактор Решение задач по эконометрике в Excel. Сравните коэффициенты детерминации двух уравнений и сделайте вывод: следует исключать фактор Решение задач по эконометрике в Excelили оставить его при построении уравнения регрессии.

Доверительный интервал прогноза

Если уравнение регрессии имеет вид:

Решение задач по эконометрике в Excel

то прогнозное значение вычисляется так же как в случае парной регрессии. Необходимо подставить заданные значения прогноза

Решение задач по эконометрике в Excel

в уравнение регрессии.

Решение задач по эконометрике в Excel

Найдем средний объем сбережений в 2011 году, если предполагаемый доход в 2010 году составит 270 тыс. рублей, а процентная ставка вырастет до 5,5%. Подставив эти значения в уравнение регрессии, получим средний объем сбережений в 2011 году:

Точечная оценка объема сбережений в 2011 году может быть дополнена интервальной оценкой, полученной по формуле 1.15:

Решение задач по эконометрике в Excel

Решение задач по эконометрике в Excel

Используя встроенные функции Excel, найдем матричное произведение:

Решение задач по эконометрике в Excel

Подставив все значения в 1.28, найдем интервальные оценки среднего сбережения населения в 2011 году:

Решение задач по эконометрике в Excel

Склонность населения к сбережению в данной модели отражается через коэффициент Решение задач по эконометрике в Excel, определяющий на какую величину вырастет объем сбережений Решение задач по эконометрике в Excelпри росте располагаемого дохода на одну единицу.

Решение задач по эконометрике в Excel

Для анализа, существенно или нет коэффициент отличается от 0,5, проверим гипотезу:

Решение задач по эконометрике в Excel

Построим Решение задач по эконометрике в Excelстатистику, которая имеет распределение Стьюдента. Зададим уровень значимости Решение задач по эконометрике в Excel, число степеней свободы Решение задач по эконометрике в Excelтогда:

Решение задач по эконометрике в Excel

Решение задач по эконометрике в Excel

Решение задач по эконометрике в Excel

то должна быть отклонена. Действительно 50% склонность населения к сбережениям явно завышена по сравнению с модельным значением в 12,4%.

Рост процентной ставки увеличивает объем сбережений

Решение задач по эконометрике в Excel

Эта зависимость характеризуется коэффициентом . Так как коэффициент статистически значим, то ответ будет статистически обоснованным.

Анализ качества уравнения регрессии

Первое построенное по выборке уравнение редко является удовлетворительным по тем или иным характеристикам. Поэтому следующей задачей эконометрического анализа является проверка качества уравнения регрессии. Эта проверка проводится по следующим этапам:

■ проверка статистической значимости коэффициентов регрессии;

■ проверка общего качества уравнения регрессии;

■ проверка свойств данных: проверка выполнимости МНК.

По всем показателям нашего примера 1.3 модель может быть признана удовлетворительной:

Решение задач по эконометрике в Excel

■ высокие -статистики;

■ коэффициент детерминации близок к единице;

Это означает, что модель может быть использована для целей анализа и прогнозирования. Мы не проверили выполнимость МНК и значимость коэффициента детерминации.

Анализ значимости Решение задач по эконометрике в Excel

Проверяется гипотеза об одновременном равенстве нулю всех объясняющих переменных — уравнение считается незначимым:

Решение задач по эконометрике в Excel

Решение задач по эконометрике в Excel

Если данная гипотеза не отклоняется, то делается вывод, что совокупное влияние всех m объясняющих переменных на зависимую переменную можно считать статистически незначимым, а общее качество уравнения регрессии невысоким.

Проверка данной гипотезы проводится на основе дисперсионного анализа, при этом сравниваются объясненная и остаточная дисперсии.

Решение задач по эконометрике в Excel

Решение задач по эконометрике в Excel

Для проверки гипотезы строится -статистика:

Решение задач по эконометрике в Excel

которая при выполнении МНК имеет распределение Фишера с числом степеней свободы

Решение задач по эконометрике в Excel

Критическое значение находится с помощью:

Решение задач по эконометрике в Excel

Решение задач по эконометрике в Excel

при уровне значимости .

■ Если Решение задач по эконометрике в Excelто гипотеза Решение задач по эконометрике в Excelотклоняется в пользу Решение задач по эконометрике в Excelчто означает объясненная дисперсия существенно больше остаточной, следовательно, уравнение регрессии достаточно качественно отражает динамику изменения зависимой переменной от объясняющей.

■ Если Решение задач по эконометрике в Excel, то гипотеза Решение задач по эконометрике в Excelпринимается, т.е. объясненная дисперсия соизмерима с остаточной дисперсией, вызванной случайными факторами. Это позволяет считать влияние объясняющих переменных модели несущественным, а следовательно, общее качество уравнения регрессии невысоким.

Решение задач по эконометрике в Excel

На практике вместо указанной гипотезы проверяется, связанная с ней гипотеза о статистической значимости коэффициента детерминации .

Решение задач по эконометрике в Excel

Очевидно, что если Решение задач по эконометрике в Excel, а линия регрессии Решение задач по эконометрике в Excelявляется наилучшей по МНК, т.е. величина Решение задач по эконометрике в Excelлинейно не зависит от Решение задач по эконометрике в Excel. Анализ статистики Решение задач по эконометрике в Excelпозволяет сделать вывод о том, что для принятия гипотезы об одновременном равенстве нулю всех коэффициентов линейной регрессии коэффициент детерминации Решение задач по эконометрике в Excelне должен существенно отличаться от нуля. Его критическое значение уменьшается при росте числа наблюдений и может стать сколь угодно малым.

Решение задач по эконометрике в Excel

Для проверки этой гипотезы числитель и знаменатель формулы 1.29 поделим на общую сумму квадратов отклонений и получим:

Решение задач по эконометрике в Excel

Вернемся к результатам нашего примера 1.3. (рис. 1.14).Найдем по таблице распределения Фишера критическую точку для уровня значимости Решение задач по эконометрике в Excel. Сравнивая критическое и наблюдаемое значения Решение задач по эконометрике в Excel, можно сделать вывод, что коэффициент детерминации статистически значим. Это означает, что совокупное влияние переменных Решение задач по эконометрике в Excelи Решение задач по эконометрике в Excelна переменную Решение задач по эконометрике в Excelсущественно. Этот же вывод можно сделать по столбцу значимость Решение задач по эконометрике в Excel, который характеризует вероятность выполнения гипотезы Решение задач по эконометрике в Excel.

Проверка качества двух коэффициентов детерминации

Статистику Решение задач по эконометрике в Excelможно использовать и для обоснования случая исключения или добавления в уравнение регрессии Решение задач по эконометрике в Excelобъясняющих переменных. Добавлять (исключать) переменные надо по одному.

Использовать лучше Решение задач по эконометрике в Excelтак как Решение задач по эконометрике в Excelвсегда растет при добавлении новой объясняющей переменной. Зависимая переменная должна быть представлена в том же виде, что и уже существующие в исследуемом уравнении регрессии. Число наблюдений для обеих моделей должно быть одинаковым.

Пусть первоначально построенное по п наблюдениям уравнение регрессии имело вид:

Решение задач по эконометрике в Excel

Решение задач по эконометрике в Excel

и скорректированный коэффициент детерминации равен .

Исключим из уравнения Решение задач по эконометрике в Excelпеременных, оказывающих наименьшее влияние на Решение задач по эконометрике в ExcelПо Решение задач по эконометрике в Excelнаблюдениям построим новое уравнение регрессии:

Решение задач по эконометрике в Excel

Решение задач по эконометрике в Excel

скорректированный коэффициент детерминации, для которого равен .

Решение задач по эконометрике в Excel

Необходимо определить существенно ли ухудшилось качество описания зависимой переменной . Для этого выдвинем гипотезы:

Решение задач по эконометрике в Excel

— ничего не изменилось

Решение задач по эконометрике в Excel

— уравнение ухудшилось, если разность больше нуля. По выборочным данным найдите статистику:

Решение задач по эконометрике в Excel

которая имеет распределения Фишера с числом степеней свободы

Решение задач по эконометрике в Excel

Решение задач по эконометрике в Excel— потеря качества уравнения в результате того, что Решение задач по эконометрике в Excelпеременных было отброшено. В результате появляется Решение задач по эконометрике в Excelдополнительных степеней свободы; Решение задач по эконометрике в Excel— остаточная дисперсия первоначального уравнения.

Сравним критическое значение Решение задач по эконометрике в Excelи с наблюдаемым при уровне значимости Решение задач по эконометрике в Excel:

■ Если Решение задач по эконометрике в Excel, то гипотеза Решение задач по эконометрике в Excelотклоняется в пользу Решение задач по эконометрике в Excel, что означает, одновременное исключение Решение задач по эконометрике в Excelобъясняющих переменных существенно повлияет на качество первоначального уравнения.

■ Если Решение задач по эконометрике в Excel, то гипотеза Решение задач по эконометрике в Excelпринимается, т.е. разность Решение задач по эконометрике в Excel; незначительная. Это позволяет считать, что исключение Решение задач по эконометрике в Excelобъясняющих переменных модели допустимым, так как общее качество уравнения регрессии изменится несущественно.

Аналогично проверяется гипотеза о добавлении к объясняющих переменных в уравнение регрессии. В этом случае составляется статистика:

Решение задач по эконометрике в Excel

Исключим фактор Решение задач по эконометрике в Excelиз уравнения регрессии примера 1.3. построим зависимость между Решение задач по эконометрике в Excelи Решение задач по эконометрике в Excel. с помощью инструмента Регрессия получим уравнение:

Решение задач по эконометрике в Excel

Решение задач по эконометрике в Excel

Коэффициенты и все остальные характеристики для этого уравнения регрессии можно посмотреть на рис 1.16. Сравним новое уравнений с уравнением полученным ранее.

Решение задач по эконометрике в Excel

Решение задач по эконометрике в Excel

В ячейке N18 находится значение -статистики вычисленное по формуле 1.31. Критическое значение (ячейка N19) находится с помощью встроенной функции Excel при уровне значимости 0,05:

Решение задач по эконометрике в Excel

Сравнивая эти два значения делаем вывод, что гипотеза Решение задач по эконометрике в Excelотклоняется в пользу гипотезы Решение задач по эконометрике в Excelто есть новое уравнение ухудшило качество приближения к выборочным данным.

Проверка качества двух коэффициентов детерминации

Необходимо сравнить два уравнения регрессии для отдельных групп наблюдений, т.е. будет одним и тем же уравнение регрессии для этих выборок. Для проверки этой гипотезы используется тест Чоу.

Пусть имеются две выборки объемом Решение задач по эконометрике в Excelи Решение задач по эконометрике в Excel. Для каждой из этих выборок получено уравнение регрессии:

Решение задач по эконометрике в Excel

Суммы квадратов отклонений Решение задач по эконометрике в Excelот линий регрессии обозначим Решение задач по эконометрике в Excelдля первого и Решение задач по эконометрике в Excelдля второго уравнения регрессии.

Выдвинем гипотезу о равенстве соответствующих коэффициентов регрессии

Решение задач по эконометрике в Excel

Объединим обе выборки в одну. Для выборки объема Решение задач по эконометрике в Excelнайдем еще одно уравнение регрессии, сумму квадратов отклонений которой обозначим Решение задач по эконометрике в Excel. Тогда для проверки гипотезы Решение задач по эконометрике в Excelстроится статистика:

Решение задач по эконометрике в Excel

которая имеет распределение Фишера с числом степеней свободы Решение задач по эконометрике в ExcelРешение задач по эконометрике в Excel

Если Решение задач по эконометрике в Excel, то значение Решение задач по эконометрике в Excel-статистики приближается к нулю, а это значит, что уравнения регрессии обеих выборок практически одинаковые. А дальше сравним наблюдаемое и критическое значения Решение задач по эконометрике в Excelи делаете вывод принимается или отклоняется гипотеза Решение задач по эконометрике в Excel.

Данные исследования отвечают на вопрос, можно ли за рассматриваемый период времени построить единое уравнение регрессии или же нужно разбить его на части и для каждого временного интервала построить свое уравнение регрессии.

Проверка выполнимости мнк. Автокорреляция остатков. Статистика дарбина-уотсона

Все предыдущие рассуждения основаны на том, что выполняются предпосылки МНК: мы предполагали, что случайные отклонения являются независимыми случайными величинами со средней, равной нулю. При работе с фактическими данными, такое допущение не всегда выполняется. Например, если вид функции выбран неудачно, то отклонения от регрессии вряд ли будут независимыми. В этом случае замечается концентрация положительных или отрицательных отклонений от регрессии и можно сомневаться в их случайном характере.

Решение задач по эконометрике в Excel

Если последовательные значения коррелируют (зависят) между собой, то говорят, что имеет место автокорреляция остатков.

МНК в случае автокорреляции дает несмещенные и состоятельные оценки, однако полученные в этом случае доверительные интервалы имеют мало смысла в силу своей ненадежности. Значительная автокорреляция говорит о том, что спецификация модели неправильная. Проверка остатков на автокорреляцию должна выполняться обязательно. Наиболее простым приемом обнаружения автокорреляции является метод Дарбина-Уотсона (Решение задач по эконометрике в Excel). Идея, которого состоит в том, что проверяются на коррелированность не любые, а только соседние величины Решение задач по эконометрике в Excel. Соседними обычно считаются соседние по возрастанию объясняющей переменной Решение задач по эконометрике в Excel( в случае перекрестной выборки) или по времени (в случае временных рядов) значения Решение задач по эконометрике в Excel.

Решение задач по эконометрике в Excel

Статистика рассчитывается по формуле:

Решение задач по эконометрике в Excel

При условии что Решение задач по эконометрике в Excelи Решение задач по эконометрике в Excelбольшое число можно предположить

Решение задач по эконометрике в Excel

тогда после преобразования получим:

Решение задач по эконометрике в Excel

Решение задач по эконометрике в Excel

Очевидно, что так как коэффициент корреляции

Решение задач по эконометрике в Excel, если Решение задач по эконометрике в Excel— автокорреляция отсутствует;

Решение задач по эконометрике в Excel

■ -полная положительная автокорреляция;

Решение задач по эконометрике в Excel

■ -полная отрицательная автокорреляция.

Решение задач по эконометрике в Excel

Возникает вопрос, какие значения Решение задач по эконометрике в Excelможно считать близкими к 2? Для обнаружения границ наблюдений статистики Решение задач по эконометрике в Excelсуществуют специальные таблицы. Для заданных Решение задач по эконометрике в Excel— уровня значимости; Решение задач по эконометрике в Excel— числа наблюдений и Решение задач по эконометрике в Excel-числа объясняющих переменных указывается два числа: Решение задач по эконометрике в Excel— нижняя граница и Решение задач по эконометрике в Excel— верхняя граница. Не обращаясь к таблице критических точек DW можно воспользоваться правилом, если l,5<Решение задач по эконометрике в Excel<2,5, автокорреляция отсутствует. Изобразим на рисунке числовой отрезок , используемый для проверки гипотезы об отсутствии автокорреляции.

Решение задач по эконометрике в Excel

Статистику для примера 1.3 находим по формуле (1.35):

Решение задач по эконометрике в Excel

Решение задач по эконометрике в Excel

Для вычисления этой статистики запустите инструмент Регрессия, включив опции Остатки и График остатков, как показано на рис. 1.18. В результате получите значение случайных отклонений е, и их графики, которые Excel строит для каждой независимой переменной, как показано на рис. 1.20 и 1.21. Чтобы найти , можно использовать функции СУММКВРАЗН и СУММКВ.

Если зависимость между Решение задач по эконометрике в Excelи Решение задач по эконометрике в Excelлинейная, то график остатков должен иметь случайный вид. На рис. 1.21 видим систематический рисунок, поэтому скорее всего между Решение задач по эконометрике в Excelи Решение задач по эконометрике в Excelсуществует нелинейная зависимость, а значит надо изменить модель, включая в нее нелинейную зависимость.

Решение задач по эконометрике в Excel

Для проверки статистической значимости Решение задач по эконометрике в Excelнадо воспользоваться таблицей критических точек Дарбина-Уотсона, например, при уровне значимости Решение задач по эконометрике в Excelи числе наблюдений

Решение задач по эконометрике в Excel

Решение задач по эконометрике в Excel

Можно считать, что автокорреляция отсутствует, так как найденная статистика попадает в критический интервал: 1,604<<2,396, что является подтверждением высокого качества модели.

Решение задач по эконометрике в Excel

Мультиколлинеарность

Решение задач по эконометрике в Excel

Увеличение числа переменных в уравнении множественной регрессии повышает точность описания взаимосвязи, однако при этом должно выполняться условие, что — объясняющие переменные, линейно независимые величины.

Под мулыиколлинеарностью понимают взаимосвязь объясняющих переменных регрессии. Если между переменными Решение задач по эконометрике в Excelи Решение задач по эконометрике в Excelсуществует функциональная зависимость Решение задач по эконометрике в Excel, то говорят о строгой мультиколлинеарности. Чаще всего между переменными существует довольно сильная корреляционная зависимость — в этом случае мультиколлинеарность называют нестрогой.

Решение задач по эконометрике в Excel

При строгой мультиколлинеарности решение матричного уравнения 1.22 становится невозможным, так как матрица вырожденная — её определитель равен нулю.

Если же мультиколлинеарность нестрогая, то решение матричного уравнения формально можно найти, однако все оценки мало надежны.

Решение задач по эконометрике в Excel

Чтобы обнаружить мультиколлинеарность надо найти определитель матрицы . Вместо этого проверяется определитель матрицы межфакторной корреляции, которую получают с помощью инструмента КОРРЕЛ.

Решение задач по эконометрике в Excel

Устранение мультиколлинеарности заключается в исключении одной из двух, находящихся во взаимосвязи переменных, либо путем пересмотра структуры уравнения регрессии. Для оценки влияния факторов на результирующий фактор в случае используются показатели частной корреляции (1.26). Если число переменных больше трех, то для их определения удобно пользоваться формулой:

Решение задач по эконометрике в Excel

Решение задач по эконометрике в Excel

где коэффициенты матрицы обратной к матрице парных коэффициентов корреляции.

Гомоскедастичность (постоянство дисперсии случайных отклонений)

Для применения МНК требуется, чтобы дисперсия остатков была величиной постоянной. Невыполнимость этого условия называется гетероскедастичностью и влечёт смещенность дисперсий оценок, так как стандартная ошибка регрессии (1.4) становится смещенной.

Обнаружение гетероскедастичности является сложной задачей потому что необходимо знать распределение Решение задач по эконометрике в Excel, соответствующее выбранному значению переменной Решение задач по эконометрике в Excel. В тесте Голфелда-Квандта предполагается, что стандартное отклонение пропорционально значению Решение задач по эконометрике в Excelпеременной Решение задач по эконометрике в Excelи Решение задач по эконометрике в Excelнормально распределены, автокорреляция остатков отсутствует. Проверка на гомоскедастичность по этому тесту содержит следующие шаги:

  1. Все Решение задач по эконометрике в Excelнаблюдений упорядочивают по величине.
  2. Упорядоченная выборка разбивается на три подвыборки размерностью Решение задач по эконометрике в Excel, Решение задач по эконометрике в Excelи Решение задач по эконометрике в Excelсоответственно.
  3. Центральные наблюдения исключаются из дальнейшего рассмотрения.
  4. Строят регрессии для первой и последней групп и находят остаточные суммы квадратов Решение задач по эконометрике в Excelи Решение задач по эконометрике в Excelсоответственно. Если условие гомоскедастичности выполняется, то Решение задач по эконометрике в Excel, в противном случае Решение задач по эконометрике в Excel.
  5. Построенная Решение задач по эконометрике в Excel-статистика, имеет распределение Фишера с Решение задач по эконометрике в Excelстепенями свободы, где Решение задач по эконометрике в Excelчисло объясняющих переменных в уравнении регрессии.
  6. Чем больше Решение задач по эконометрике в Excelпревышает значение Решение задач по эконометрике в Excel, тем более нарушена предпосылка о равенстве остаточных дисперсий.
  7. НЕЛИНЕЙНАЯ РЕГРЕССИЯ

Если между экономическими явлениями существуют нелинейные соотношения, то они выражаются с помощью соответствующих функций:

Решение задач по эконометрике в Excel

a) квадратичная функция (полином любой степени);

b) равносторонняя гипербола;

d) показательная и др.

Кроме указанных функций для описания связи двух переменных можно использовать и другие типы кривых:

Решение задач по эконометрике в Excel

Различают два класса нелинейных уравнений:

1) регрессии, нелинейные относительно включенных объясняющих переменных,

но линейные по оцениваемым параметрам;

2) регрессии, нелинейные по оцениваемым параметрам.

К первому классу — нелинейные по переменным — относятся кривые а и b (рис 2.1). Нелинейными по параметрам (второй класс) являются зависимости c и d на рис. 2.1.

Линейные по параметру

Такие модели легко приводятся к линейному виду — линеаризуются. Для линейных но параметру моделей вводят новую переменную (таблица 2.1) и переходят к построению линейной регрессии по преобразованным данным. Применяя инструмент Регрессия, к преобразованным данным можно найти все оценки параметров преобразованных моделей и оценить их качество.

Решение задач по эконометрике в Excel

Качество исходной модели можно оценить, используя индекс корреляции (1.26). Оценка статистической значимости индекса корреляции проводится с помощью — статистики, так же как и коэффициента детерминации (1.29). Довольно часто в экономических исследованиях для оценки качества построенного уравнения используют среднюю ошибку аппроксимации, которая вычисляется по формуле:

Решение задач по эконометрике в Excel

и оценивает по модулю величину отклонений расчетных значений от фактических. Допустимый предел значений средней ошибки аппроксимации не более 8-10%.

Приведем примеры использования нелинейных моделей, перечисленных в таблице 2.1.

Полиномиальная модель (1) может отражать зависимость между объемом выпуска Решение задач по эконометрике в Excelи издержками производства Решение задач по эконометрике в Excel; или расходами на рекламу Решение задач по эконометрике в Excelи прибылью Решение задач по эконометрике в Excelи т.д. В экономике наиболее часто используют многочлен второй степени реже третьей степени. Ограничения в применении многочленов более высоких степеней связано с требованием однородности исследуемой совокупности: чем выше степень многочлена, тем больше изгибов имеет кривая и соответственно меньше однородность по результативному признаку. Надо помнить, что графики многочленов имеют промежутки монотонности и точки экстремумов, поэтому параметры применения этих моделей не всегда могут быть логически истолкованы. Поэтому, если такая зависимость четко не определена графически (параболическая), то её лучше заменить другой нелинейной функцией.

Гиперболическая модель (2) — классическим примером этой модели является кривая Филлипса Решение задач по эконометрике в Excel, характеризующая соотношение между уровнем безработицы Решение задач по эконометрике в Excelи процентом прироста заработной платы Решение задач по эконометрике в Excel. При Решение задач по эконометрике в Excelкривая характеризуется нижней асимптотой Решение задач по эконометрике в Excel. Соответственно можно определить уровень безработицы, при котором заработная плата стабильна и темп её прироста равен нулю. При Решение задач по эконометрике в Excelгиперболическая функция будет медленно расти для Решение задач по эконометрике в Excelи имеет горизонтальную асимптоту Решение задач по эконометрике в Excel. Такие кривые называют кривыми Энгеля, который сформулировал закономерность: с ростом доходов Решение задач по эконометрике в Excelдоля доходов, расходуемых на продовольствие Решение задач по эконометрике в Excelуменьшается.

Решение задач по эконометрике в Excel

Полулогарифмические модели (3) используются, когда необходимо определить темп роста или прироста экономических показателей. Например, при анализе банковского вклада по процентной ставке, при исследовании зависимости прироста объема выпуска продукции от процентного увеличения затрат на расходы, бюджетного дефицита от темпа роста ВВП, темп роста инфляции от объема денежной массы и т.д.

Нелинейные по параметру

Уравнения нелинейные по параметру можно разделить на:

  1. внутренне линейные — можно привести к линейному виду путем преобразований;
  2. внутренне нелинейные, которые не могут быть сведены к линейной модели.

Решение задач по эконометрике в Excel

Если прологарифмировать обе части уравнения 2.2, получится модель, легко приводящаяся к линейному виду:

Решение задач по эконометрике в Excel

Надо сделать замену:

Решение задач по эконометрике в Excel

получим линейную модель (1.1).

Коэффициент модели Решение задач по эконометрике в Excelопределяет эластичность переменной Решение задач по эконометрике в Excelпо переменной Решение задач по эконометрике в Excel, то есть процентное изменение Решение задач по эконометрике в Excelпри изменении Решение задач по эконометрике в Excelна 1%. Степенная модель имеет постоянную эластичность, это легко увидеть, если продифференцировать обе части уравнения (2.3):

Решение задач по эконометрике в Excel

Решение задач по эконометрике в Excel

Так как константа, то модель 2.3 называют моделью постоянной эластичности.

Решение задач по эконометрике в Excel

В случае парной регрессии использование обоснование использования степенной модели достаточно просто. Надо построить корреляционное поле для точек , если их расположение соответствует прямой линии, то произведенная замена хорошая и можно использовать степенную модель.

Данная модель легко обобщается на большее число переменных. Наиболее известная — производственная функция Кобба-Дугласа: Решение задач по эконометрике в Excel, где Решение задач по эконометрике в Excel— объем выпуска; Решение задач по эконометрике в Excel— затраты капитала; Решение задач по эконометрике в Excel— затраты труда.

Лог-линейные модели широко используются в банковском и финансовом анализе:

Решение задач по эконометрике в Excel

где Решение задач по эконометрике в Excel— первоначальный банковский вклад, Решение задач по эконометрике в Excel— процентная ставка, Решение задач по эконометрике в Excel— размер вклада на момент Решение задач по эконометрике в Excel.

Прологарифмируем обе части этой модели

Решение задач по эконометрике в Excel

Решение задач по эконометрике в Excel

получим полулогарифмическую модель:

Решение задач по эконометрике в Excel

Коэффициент Решение задач по эконометрике в Excelв уравнении 2.6 имеет смысл темпа прироста переменной Решение задач по эконометрике в Excelпо переменной Решение задач по эконометрике в Excel, то есть характеризует относительное изменение Решение задач по эконометрике в Excelк абсолютному изменению Решение задач по эконометрике в Excel. Продифференцируем 2.6 по Решение задач по эконометрике в Excel, получим:

Решение задач по эконометрике в Excel

Умножив Решение задач по эконометрике в Excelна 100%, получим темп прироста Решение задач по эконометрике в Excel. Надо сказать, что коэффициент

Решение задач по эконометрике в Excel

определяет мгновенный темп прироста, а

Решение задач по эконометрике в Excel

характеризует темп прироста сложного процента.

Показательные модели используются, когда анализируется изменение переменной Решение задач по эконометрике в Excelс постоянным темпом прироста во времени Решение задач по эконометрике в Excel:

Решение задач по эконометрике в Excel

Если провести логарифмирование, то получится уравнение аналогичное 2.5 В общем виде показательная модель имеет вид:

Решение задач по эконометрике в Excel

но в силу равенства

Решение задач по эконометрике в Excel

сводится к уравнению 2.8.

Коэффициент эластичности

Рассматривая степенную модель, мы ввели понятие эластичности функции: предел отношения относительных приращений независимой переменной и зависимой называется эластичностью функции

Решение задач по эконометрике в Excel

показывает на сколько процентов изменится в среднем результат, если фактор х изменится на 1%.

Для других форм связи Э зависит от значения фактора Решение задач по эконометрике в Excelи не является величиной постоянной, поэтому рассчитывается средний коэффициент эластичности, который показывает, на сколько процентов в среднем по совокупности изменится результат Решение задач по эконометрике в Excelот своей средней величины, если фактор Решение задач по эконометрике в Excelизменится на 1% от своего среднего значения. Формула для расчета:

Решение задач по эконометрике в Excel

Несмотря на широкое использование в экономике коэффициентов эластичности, возможны случаи, когда они не имеют экономического смысла. Составьте таблицу коэффициентов эластичности для всех рассмотренных нелинейных моделей самостоятельно.

2.4. ПОСТРОЕНИЕ НЕЛИНЕЙНЫХ РЕГРЕССИЙ

Решение задач по эконометрике в Excel

Можно воспользоваться командой Добавить линию тренда, так же как в случае линейного тренда (раздел 1.3): необходимо построить корреляционное поле и выбрать одну из зависимостей на вкладке параметры: полиномиальный, логарифмический, показательный и экспоненциальный. Такой способ удобен для случая двух переменных.

Использовать инструмент Регрессия можно только для преобразованных данных. Этот способ дает много не нужной информации.

Пример 3.1. По семи территориям Южного федерального округа за 2001 год известны значения двух признаков:

Решение задач по эконометрике в Excel

  1. Постройте уравнения регрессии для модели:

d) логарифмической; гиперболы.

  1. Оцените каждую модель через среднюю ошибку аппроксимации Решение задач по эконометрике в Excelи Решение задач по эконометрике в Excel-критерий Фишера.

Решение задач по эконометрике в Excel

Проще всего построить поле корреляции, а затем добавить линии тренда (см. параграф 1.З.). Для полученных уравнений надо найти коэффициент аппроксимации и проверить -критерий.

1а. Уравнение линейной регрессии:

Решение задач по эконометрике в Excel

Решение задач по эконометрике в Excel

Решение задач по эконометрике в Excel

Вариация результата на 12% объясняется вариацией фактора — статистику найдем по формуле 1.13

Решение задач по эконометрике в Excel

Решение задач по эконометрике в Excel

то параметры линейного уравнения и показатель тесноты связи между Решение задач по эконометрике в Excelи Решение задач по эконометрике в Excelстатистически незначимы и гипотеза о линейности уравнения регрессии отклоняется. Самостоятельно вычислите величину средней ошибки аппроксимации:

Решение задач по эконометрике в Excel

l.b. Степенная модель

Решение задач по эконометрике в Excel

Решение задач по эконометрике в Excel

Подставляя в уравнение регрессии фактические значения Решение задач по эконометрике в Excel, получим Решение задач по эконометрике в Excel. По этим значениям, используя формулу для индекса корреляции (1.26), получим

Решение задач по эконометрике в Excel

и среднюю ошибку аппроксимации:

Решение задач по эконометрике в Excel

Характеристики степенной модели указывают, что она не намного лучше линейной функции описывает связь между Решение задач по эконометрике в Excelи Решение задач по эконометрике в Excel.

1с. Аналогично l.b. для показательной модели

Решение задач по эконометрике в Excel

сначала нужно выполнить линеаризацию

Решение задач по эконометрике в Excel

и после замены переменных

Решение задач по эконометрике в Excel

рассмотрим линейное уравнение:

Решение задач по эконометрике в Excel

Используя столбцы для Решение задач по эконометрике в Excelи Решение задач по эконометрике в Excelиз предыдущей таблицы, получим коэффициенты:

Решение задач по эконометрике в Excel

Решение задач по эконометрике в Excel

После потенциирования запишем уравнение в обычной форме:

Решение задач по эконометрике в Excel

Все эти расчеты можно не делать, если воспользоваться для вычисления параметров Решение задач по эконометрике в Excelи Решение задач по эконометрике в Excelмодели Решение задач по эконометрике в Excelвстроенной статистической функцией ЛГРФПРИБЛ. Выполните самостоятельно и сравните результаты. Убедитесь, что значения вычисленные по формулам и полученные с помощью функции ЛГРФПРИБЛ() совпадают (рис.2.4)

Решение задач по эконометрике в Excel

Тесноту связи оценим с помощью индекса корреляции

Решение задач по эконометрике в Excel

который вычисляется по формуле (1.26). Связь между Решение задач по эконометрике в Excelи Решение задач по эконометрике в Excelнебольшая. Коэффициент аппроксимации, вычисленный по формуле (3.3) Решение задач по эконометрике в Excel=8% говорит о повышенной ошибке приближения, но в допустимых пределах. Сравнивая, показатели степенной и показательной функций можно сделать вывод, что степенная функция чуть лучше описывает связь между Решение задач по эконометрике в Excelи Решение задач по эконометрике в Excelчем показательная.

l.d. Аналогичные расчеты надо провести и для равносторонней гиперболы Решение задач по эконометрике в Excel, которая линеаризуется заменой Решение задач по эконометрике в Excel.

Решение задач по эконометрике в Excel

Для этого уравнения в таблицу исходных значений надо добавить столбец , а все остальные вычисления проведите, используя один из описанных выше способов:

Решение задач по эконометрике в Excel

Получена наибольшая оценка тесноты связи по сравнению с линейной, степенной и показательной регрессиями, а Решение задач по эконометрике в Excelостается в пределах допустимого значения, это означает, что для описания зависимости расходов на покупку продовольственных товаров в общих расходах ( Решение задач по эконометрике в Excelв %) от среднедневной заработной платы одного работающего ( Решение задач по эконометрике в Excelв руб.) необходимо из предложенных моделей выбрать гиперболическую.

Решение задач по эконометрике в Excel

  • Введем гипотезу : уравнение регрессии статистически незначимо и рассмотрим статистику (1.30):

Решение задач по эконометрике в Excel

Решение задач по эконометрике в Excelпри уровне значимости Решение задач по эконометрике в Excelсмотри в пункте l.a.

Гипотеза Решение задач по эконометрике в Excelо статистической незначимости параметров уравнения принимается. Результат можно объяснить небольшим числом наблюдений и сравнительно невысокой теснотой гиперболической зависимости между Решение задач по эконометрике в Excelи Решение задач по эконометрике в Excel.

Ковариация

Пусть математическое ожидание и дисперсия случайной величины X равны, соответственно, μx и σx 2 . А математическое ожидание и дисперсия случайной величины Y равны, соответственно, μy и σy 2 .

Для независимых случайных величин X и Y всегда матожидание произведения случайных величин равно произведению их матожиданий по отдельности:

А для зависимых случайных величин это равенство не выполняется.

Ковариация, это отклонение математического ожидания произведения двух случайных величин от произведения их математических ожиданий:

Ковариация характеризует отклонение матожидания произведения двух случайных величин от произведения матожиданий этих величин. Так как это отклонение бывает только для зависимых величин, то ковариация характеризует степень этой зависимости. Чем она больше отличается от нуля, тем больше зависимость.

Матрица ковариаций для нескольких случайных величин X, Y, . Z всегда симметрична, причем на главной диагонали этой матрицы всегда стоят положительные числа, равные дисперсиям случайных величин X, Y, . Z.

Матрица ковариаций

Ключевые свойства

Корреляция — безразмерная величина, указывающая не только на направление взаимосвязи, но и на ее тесноту (в зависимости от того, насколько большим является абсолютное значение). Единицы измерения исключены из-за того, что ковариацию разделили на среднеквадратическое отклонение.

Напоследок необходимо запомнить, что корреляция не является причинно-следственной связью. Высокая корреляция между двумя случайными переменными просто означает, что они связаны друг с другом, но их взаимоотношение не обязательно должен иметь причинно-следственный характер. Доказать причинно-следственную связь можно только с помощью контролируемых экспериментов, при которых внешние переменные исключаются и эффекты двух данных переменных изолируются.

Ссылка на основную публикацию